KyanChen's picture
Upload 303 files
4d0eb62
raw
history blame
5.1 kB
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, List, Optional, Union
import torch
import torch.nn as nn
from mmengine.dist import all_gather
from mmengine.model import ExponentialMovingAverage
from mmpretrain.registry import MODELS
from mmpretrain.structures import DataSample
from ..utils import batch_shuffle_ddp, batch_unshuffle_ddp
from .base import BaseSelfSupervisor
@MODELS.register_module()
class MoCo(BaseSelfSupervisor):
"""MoCo.
Implementation of `Momentum Contrast for Unsupervised Visual
Representation Learning <https://arxiv.org/abs/1911.05722>`_.
Part of the code is borrowed from:
`<https://github.com/facebookresearch/moco/blob/master/moco/builder.py>`_.
Args:
backbone (dict): Config dict for module of backbone.
neck (dict): Config dict for module of deep features to compact feature
vectors.
head (dict): Config dict for module of head functions.
queue_len (int): Number of negative keys maintained in the
queue. Defaults to 65536.
feat_dim (int): Dimension of compact feature vectors.
Defaults to 128.
momentum (float): Momentum coefficient for the momentum-updated
encoder. Defaults to 0.001.
pretrained (str, optional): The pretrained checkpoint path, support
local path and remote path. Defaults to None.
data_preprocessor (dict, optional): The config for preprocessing
input data. If None or no specified type, it will use
"SelfSupDataPreprocessor" as type.
See :class:`SelfSupDataPreprocessor` for more details.
Defaults to None.
init_cfg (Union[List[dict], dict], optional): Config dict for weight
initialization. Defaults to None.
"""
def __init__(self,
backbone: dict,
neck: dict,
head: dict,
queue_len: int = 65536,
feat_dim: int = 128,
momentum: float = 0.001,
pretrained: Optional[str] = None,
data_preprocessor: Optional[dict] = None,
init_cfg: Optional[Union[List[dict], dict]] = None) -> None:
super().__init__(
backbone=backbone,
neck=neck,
head=head,
pretrained=pretrained,
data_preprocessor=data_preprocessor,
init_cfg=init_cfg)
# create momentum model
self.encoder_k = ExponentialMovingAverage(
nn.Sequential(self.backbone, self.neck), momentum)
# create the queue
self.queue_len = queue_len
self.register_buffer('queue', torch.randn(feat_dim, queue_len))
self.queue = nn.functional.normalize(self.queue, dim=0)
self.register_buffer('queue_ptr', torch.zeros(1, dtype=torch.long))
@torch.no_grad()
def _dequeue_and_enqueue(self, keys: torch.Tensor) -> None:
"""Update queue."""
# gather keys before updating queue
keys = torch.cat(all_gather(keys), dim=0)
batch_size = keys.shape[0]
ptr = int(self.queue_ptr)
assert self.queue_len % batch_size == 0 # for simplicity
# replace the keys at ptr (dequeue and enqueue)
self.queue[:, ptr:ptr + batch_size] = keys.transpose(0, 1)
ptr = (ptr + batch_size) % self.queue_len # move pointer
self.queue_ptr[0] = ptr
def loss(self, inputs: List[torch.Tensor], data_samples: List[DataSample],
**kwargs) -> Dict[str, torch.Tensor]:
"""The forward function in training.
Args:
inputs (List[torch.Tensor]): The input images.
data_samples (List[DataSample]): All elements required
during the forward function.
Returns:
Dict[str, torch.Tensor]: A dictionary of loss components.
"""
assert isinstance(inputs, list)
im_q = inputs[0]
im_k = inputs[1]
# compute query features from encoder_q
q = self.neck(self.backbone(im_q))[0] # queries: NxC
q = nn.functional.normalize(q, dim=1)
# compute key features
with torch.no_grad(): # no gradient to keys
# update the key encoder
self.encoder_k.update_parameters(
nn.Sequential(self.backbone, self.neck))
# shuffle for making use of BN
im_k, idx_unshuffle = batch_shuffle_ddp(im_k)
k = self.encoder_k(im_k)[0] # keys: NxC
k = nn.functional.normalize(k, dim=1)
# undo shuffle
k = batch_unshuffle_ddp(k, idx_unshuffle)
# compute logits
# Einstein sum is more intuitive
# positive logits: Nx1
l_pos = torch.einsum('nc,nc->n', [q, k]).unsqueeze(-1)
# negative logits: NxK
l_neg = torch.einsum('nc,ck->nk', [q, self.queue.clone().detach()])
loss = self.head.loss(l_pos, l_neg)
# update the queue
self._dequeue_and_enqueue(k)
losses = dict(loss=loss)
return losses