KyanChen's picture
Upload 303 files
4d0eb62
raw
history blame
3.99 kB
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Optional, Union
import torch
import torch.nn as nn
from mmpretrain.registry import MODELS
from ..utils import build_2d_sincos_position_embedding
from .mae_neck import MAEPretrainDecoder
@MODELS.register_module()
class MixMIMPretrainDecoder(MAEPretrainDecoder):
"""Decoder for MixMIM Pretraining.
Some of the code is borrowed from `https://github.com/Sense-X/MixMIM`. # noqa
Args:
num_patches (int): The number of total patches. Defaults to 196.
patch_size (int): Image patch size. Defaults to 16.
in_chans (int): The channel of input image. Defaults to 3.
embed_dim (int): Encoder's embedding dimension. Defaults to 1024.
encoder_stride (int): The output stride of MixMIM backbone. Defaults
to 32.
decoder_embed_dim (int): Decoder's embedding dimension.
Defaults to 512.
decoder_depth (int): The depth of decoder. Defaults to 8.
decoder_num_heads (int): Number of attention heads of decoder.
Defaults to 16.
mlp_ratio (int): Ratio of mlp hidden dim to decoder's embedding dim.
Defaults to 4.
norm_cfg (dict): Normalization layer. Defaults to LayerNorm.
init_cfg (Union[List[dict], dict], optional): Initialization config
dict. Defaults to None.
"""
def __init__(self,
num_patches: int = 196,
patch_size: int = 16,
in_chans: int = 3,
embed_dim: int = 1024,
encoder_stride: int = 32,
decoder_embed_dim: int = 512,
decoder_depth: int = 8,
decoder_num_heads: int = 16,
mlp_ratio: int = 4,
norm_cfg: dict = dict(type='LN', eps=1e-6),
init_cfg: Optional[Union[List[dict], dict]] = None) -> None:
super().__init__(
num_patches=num_patches,
patch_size=patch_size,
in_chans=in_chans,
embed_dim=embed_dim,
decoder_embed_dim=decoder_embed_dim,
decoder_depth=decoder_depth,
decoder_num_heads=decoder_num_heads,
mlp_ratio=mlp_ratio,
norm_cfg=norm_cfg,
init_cfg=init_cfg)
self.decoder_pos_embed = nn.Parameter(
torch.zeros(1, num_patches, decoder_embed_dim),
requires_grad=False)
self.decoder_pred = nn.Linear(decoder_embed_dim, encoder_stride**2 * 3)
def init_weights(self) -> None:
"""Initialize position embedding and mask token of MixMIM decoder."""
super(MAEPretrainDecoder, self).init_weights()
decoder_pos_embed = build_2d_sincos_position_embedding(
int(self.num_patches**.5),
self.decoder_pos_embed.shape[-1],
cls_token=False)
self.decoder_pos_embed.data.copy_(decoder_pos_embed.float())
torch.nn.init.normal_(self.mask_token, std=.02)
def forward(self, x: torch.Tensor, mask: torch.Tensor) -> torch.Tensor:
"""Forward function.
Args:
x (torch.Tensor): The input features, which is of shape (N, L, C).
mask (torch.Tensor): The tensor to indicate which tokens a
re masked.
Returns:
torch.Tensor: The reconstructed features, which is of shape
(N, L, C).
"""
x = self.decoder_embed(x)
B, L, C = x.shape
mask_tokens = self.mask_token.expand(B, L, -1)
x1 = x * (1 - mask) + mask_tokens * mask
x2 = x * mask + mask_tokens * (1 - mask)
x = torch.cat([x1, x2], dim=0)
# add pos embed
x = x + self.decoder_pos_embed
# apply Transformer blocks
for idx, blk in enumerate(self.decoder_blocks):
x = blk(x)
x = self.decoder_norm(x)
# predictor projection
x = self.decoder_pred(x)
return x