Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import List, Optional, Tuple, Union | |
import torch | |
import torch.nn as nn | |
from mmcv.cnn import build_norm_layer | |
from mmengine.model import BaseModule | |
from mmpretrain.registry import MODELS | |
from ..backbones.vision_transformer import TransformerEncoderLayer | |
from ..utils import build_2d_sincos_position_embedding | |
class MAEPretrainDecoder(BaseModule): | |
"""Decoder for MAE Pre-training. | |
Some of the code is borrowed from `https://github.com/facebookresearch/mae`. # noqa | |
Args: | |
num_patches (int): The number of total patches. Defaults to 196. | |
patch_size (int): Image patch size. Defaults to 16. | |
in_chans (int): The channel of input image. Defaults to 3. | |
embed_dim (int): Encoder's embedding dimension. Defaults to 1024. | |
decoder_embed_dim (int): Decoder's embedding dimension. | |
Defaults to 512. | |
decoder_depth (int): The depth of decoder. Defaults to 8. | |
decoder_num_heads (int): Number of attention heads of decoder. | |
Defaults to 16. | |
mlp_ratio (int): Ratio of mlp hidden dim to decoder's embedding dim. | |
Defaults to 4. | |
norm_cfg (dict): Normalization layer. Defaults to LayerNorm. | |
init_cfg (Union[List[dict], dict], optional): Initialization config | |
dict. Defaults to None. | |
Example: | |
>>> from mmpretrain.models import MAEPretrainDecoder | |
>>> import torch | |
>>> self = MAEPretrainDecoder() | |
>>> self.eval() | |
>>> inputs = torch.rand(1, 50, 1024) | |
>>> ids_restore = torch.arange(0, 196).unsqueeze(0) | |
>>> level_outputs = self.forward(inputs, ids_restore) | |
>>> print(tuple(level_outputs.shape)) | |
(1, 196, 768) | |
""" | |
def __init__(self, | |
num_patches: int = 196, | |
patch_size: int = 16, | |
in_chans: int = 3, | |
embed_dim: int = 1024, | |
decoder_embed_dim: int = 512, | |
decoder_depth: int = 8, | |
decoder_num_heads: int = 16, | |
mlp_ratio: int = 4, | |
norm_cfg: dict = dict(type='LN', eps=1e-6), | |
predict_feature_dim: Optional[float] = None, | |
init_cfg: Optional[Union[List[dict], dict]] = None) -> None: | |
super().__init__(init_cfg=init_cfg) | |
self.num_patches = num_patches | |
# used to convert the dim of features from encoder to the dim | |
# compatible with that of decoder | |
self.decoder_embed = nn.Linear(embed_dim, decoder_embed_dim, bias=True) | |
self.mask_token = nn.Parameter(torch.zeros(1, 1, decoder_embed_dim)) | |
# create new position embedding, different from that in encoder | |
# and is not learnable | |
self.decoder_pos_embed = nn.Parameter( | |
torch.zeros(1, self.num_patches + 1, decoder_embed_dim), | |
requires_grad=False) | |
self.decoder_blocks = nn.ModuleList([ | |
TransformerEncoderLayer( | |
decoder_embed_dim, | |
decoder_num_heads, | |
int(mlp_ratio * decoder_embed_dim), | |
qkv_bias=True, | |
norm_cfg=norm_cfg) for _ in range(decoder_depth) | |
]) | |
self.decoder_norm_name, decoder_norm = build_norm_layer( | |
norm_cfg, decoder_embed_dim, postfix=1) | |
self.add_module(self.decoder_norm_name, decoder_norm) | |
# Used to map features to pixels | |
if predict_feature_dim is None: | |
predict_feature_dim = patch_size**2 * in_chans | |
self.decoder_pred = nn.Linear( | |
decoder_embed_dim, predict_feature_dim, bias=True) | |
def init_weights(self) -> None: | |
"""Initialize position embedding and mask token of MAE decoder.""" | |
super().init_weights() | |
decoder_pos_embed = build_2d_sincos_position_embedding( | |
int(self.num_patches**.5), | |
self.decoder_pos_embed.shape[-1], | |
cls_token=True) | |
self.decoder_pos_embed.data.copy_(decoder_pos_embed.float()) | |
torch.nn.init.normal_(self.mask_token, std=.02) | |
def decoder_norm(self): | |
"""The normalization layer of decoder.""" | |
return getattr(self, self.decoder_norm_name) | |
def forward(self, x: torch.Tensor, | |
ids_restore: torch.Tensor) -> torch.Tensor: | |
"""The forward function. | |
The process computes the visible patches' features vectors and the mask | |
tokens to output feature vectors, which will be used for | |
reconstruction. | |
Args: | |
x (torch.Tensor): hidden features, which is of shape | |
B x (L * mask_ratio) x C. | |
ids_restore (torch.Tensor): ids to restore original image. | |
Returns: | |
torch.Tensor: The reconstructed feature vectors, which is of | |
shape B x (num_patches) x C. | |
""" | |
# embed tokens | |
x = self.decoder_embed(x) | |
# append mask tokens to sequence | |
mask_tokens = self.mask_token.repeat( | |
x.shape[0], ids_restore.shape[1] + 1 - x.shape[1], 1) | |
x_ = torch.cat([x[:, 1:, :], mask_tokens], dim=1) | |
x_ = torch.gather( | |
x_, | |
dim=1, | |
index=ids_restore.unsqueeze(-1).repeat(1, 1, x.shape[2])) | |
x = torch.cat([x[:, :1, :], x_], dim=1) | |
# add pos embed | |
x = x + self.decoder_pos_embed | |
# apply Transformer blocks | |
for blk in self.decoder_blocks: | |
x = blk(x) | |
x = self.decoder_norm(x) | |
# predictor projection | |
x = self.decoder_pred(x) | |
# remove cls token | |
x = x[:, 1:, :] | |
return x | |
class ClsBatchNormNeck(BaseModule): | |
"""Normalize cls token across batch before head. | |
This module is proposed by MAE, when running linear probing. | |
Args: | |
input_features (int): The dimension of features. | |
affine (bool): a boolean value that when set to ``True``, this module | |
has learnable affine parameters. Defaults to False. | |
eps (float): a value added to the denominator for numerical stability. | |
Defaults to 1e-6. | |
init_cfg (Dict or List[Dict], optional): Config dict for weight | |
initialization. Defaults to None. | |
""" | |
def __init__(self, | |
input_features: int, | |
affine: bool = False, | |
eps: float = 1e-6, | |
init_cfg: Optional[Union[dict, List[dict]]] = None) -> None: | |
super().__init__(init_cfg) | |
self.bn = nn.BatchNorm1d(input_features, affine=affine, eps=eps) | |
def forward( | |
self, | |
inputs: Tuple[List[torch.Tensor]]) -> Tuple[List[torch.Tensor]]: | |
"""The forward function.""" | |
# Only apply batch norm to cls_token | |
inputs = [self.bn(input_) for input_ in inputs] | |
return tuple(inputs) | |