Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import List, Optional, Tuple, Union | |
import torch | |
import torch.nn as nn | |
from mmengine.model import BaseModule | |
from mmpretrain.registry import MODELS | |
class DenseCLNeck(BaseModule): | |
"""The non-linear neck of DenseCL. | |
Single and dense neck in parallel: fc-relu-fc, conv-relu-conv. | |
Borrowed from the authors' `code <https://github.com/WXinlong/DenseCL>`_. | |
Args: | |
in_channels (int): Number of input channels. | |
hid_channels (int): Number of hidden channels. | |
out_channels (int): Number of output channels. | |
num_grid (int): The grid size of dense features. Defaults to None. | |
init_cfg (dict or list[dict], optional): Initialization config dict. | |
Defaults to None. | |
""" | |
def __init__(self, | |
in_channels: int, | |
hid_channels: int, | |
out_channels: int, | |
num_grid: Optional[int] = None, | |
init_cfg: Optional[Union[dict, List[dict]]] = None) -> None: | |
super().__init__(init_cfg) | |
self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) | |
self.mlp = nn.Sequential( | |
nn.Linear(in_channels, hid_channels), nn.ReLU(inplace=True), | |
nn.Linear(hid_channels, out_channels)) | |
self.with_pool = True if num_grid is not None else False | |
if self.with_pool: | |
self.pool = nn.AdaptiveAvgPool2d((num_grid, num_grid)) | |
self.mlp2 = nn.Sequential( | |
nn.Conv2d(in_channels, hid_channels, 1), nn.ReLU(inplace=True), | |
nn.Conv2d(hid_channels, out_channels, 1)) | |
self.avgpool2 = nn.AdaptiveAvgPool2d((1, 1)) | |
def forward(self, x: Tuple[torch.Tensor]) -> Tuple[torch.Tensor]: | |
"""Forward function of neck. | |
Args: | |
x (Tuple[torch.Tensor]): feature map of backbone. | |
Returns: | |
Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
- ``avgpooled_x``: Global feature vectors. | |
- ``x``: Dense feature vectors. | |
- ``avgpooled_x2``: Dense feature vectors for queue. | |
""" | |
assert len(x) == 1 | |
x = x[0] | |
avgpooled_x = self.avgpool(x) | |
avgpooled_x = self.mlp(avgpooled_x.view(avgpooled_x.size(0), -1)) | |
if self.with_pool: | |
x = self.pool(x) # sxs | |
x = self.mlp2(x) # sxs: bxdxsxs | |
avgpooled_x2 = self.avgpool2(x) # 1x1: bxdx1x1 | |
x = x.view(x.size(0), x.size(1), -1) # bxdxs^2 | |
avgpooled_x2 = avgpooled_x2.view(avgpooled_x2.size(0), -1) # bxd | |
return avgpooled_x, x, avgpooled_x2 | |