Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import List, Optional, Union | |
import numpy as np | |
import torch | |
import torch.distributed as dist | |
import torch.nn as nn | |
from mmengine.dist import all_reduce | |
from mmengine.model import BaseModule | |
from mmpretrain.registry import MODELS | |
def distributed_sinkhorn(out: torch.Tensor, sinkhorn_iterations: int, | |
world_size: int, epsilon: float) -> torch.Tensor: | |
"""Apply the distributed sinknorn optimization on the scores matrix to find | |
the assignments. | |
This function is modified from | |
https://github.com/facebookresearch/swav/blob/main/main_swav.py | |
Args: | |
out (torch.Tensor): The scores matrix | |
sinkhorn_iterations (int): Number of iterations in Sinkhorn-Knopp | |
algorithm. | |
world_size (int): The world size of the process group. | |
epsilon (float): regularization parameter for Sinkhorn-Knopp algorithm. | |
Returns: | |
torch.Tensor: Output of sinkhorn algorithm. | |
""" | |
eps_num_stab = 1e-12 | |
Q = torch.exp(out / epsilon).t( | |
) # Q is K-by-B for consistency with notations from our paper | |
B = Q.shape[1] * world_size # number of samples to assign | |
K = Q.shape[0] # how many prototypes | |
# make the matrix sums to 1 | |
sum_Q = torch.sum(Q) | |
all_reduce(sum_Q) | |
Q /= sum_Q | |
for it in range(sinkhorn_iterations): | |
# normalize each row: total weight per prototype must be 1/K | |
u = torch.sum(Q, dim=1, keepdim=True) | |
if len(torch.nonzero(u == 0)) > 0: | |
Q += eps_num_stab | |
u = torch.sum(Q, dim=1, keepdim=True, dtype=Q.dtype) | |
all_reduce(u) | |
Q /= u | |
Q /= K | |
# normalize each column: total weight per sample must be 1/B | |
Q /= torch.sum(Q, dim=0, keepdim=True) | |
Q /= B | |
Q *= B # the columns must sum to 1 so that Q is an assignment | |
return Q.t() | |
class MultiPrototypes(BaseModule): | |
"""Multi-prototypes for SwAV head. | |
Args: | |
output_dim (int): The output dim from SwAV neck. | |
num_prototypes (List[int]): The number of prototypes needed. | |
init_cfg (dict or List[dict], optional): Initialization config dict. | |
Defaults to None. | |
""" | |
def __init__(self, | |
output_dim: int, | |
num_prototypes: List[int], | |
init_cfg: Optional[Union[List[dict], dict]] = None) -> None: | |
super().__init__(init_cfg=init_cfg) | |
assert isinstance(num_prototypes, list) | |
self.num_heads = len(num_prototypes) | |
for i, k in enumerate(num_prototypes): | |
self.add_module('prototypes' + str(i), | |
nn.Linear(output_dim, k, bias=False)) | |
def forward(self, x: torch.Tensor) -> List[torch.Tensor]: | |
"""Run forward for every prototype.""" | |
out = [] | |
for i in range(self.num_heads): | |
out.append(getattr(self, 'prototypes' + str(i))(x)) | |
return out | |
class SwAVLoss(BaseModule): | |
"""The Loss for SwAV. | |
This Loss contains clustering and sinkhorn algorithms to compute Q codes. | |
Part of the code is borrowed from `script | |
<https://github.com/facebookresearch/swav>`_. | |
The queue is built in `engine/hooks/swav_hook.py`. | |
Args: | |
feat_dim (int): feature dimension of the prototypes. | |
sinkhorn_iterations (int): number of iterations in Sinkhorn-Knopp | |
algorithm. Defaults to 3. | |
epsilon (float): regularization parameter for Sinkhorn-Knopp algorithm. | |
Defaults to 0.05. | |
temperature (float): temperature parameter in training loss. | |
Defaults to 0.1. | |
crops_for_assign (List[int]): list of crops id used for computing | |
assignments. Defaults to [0, 1]. | |
num_crops (List[int]): list of number of crops. Defaults to [2]. | |
num_prototypes (int): number of prototypes. Defaults to 3000. | |
init_cfg (dict or List[dict], optional): Initialization config dict. | |
Defaults to None. | |
""" | |
def __init__(self, | |
feat_dim: int, | |
sinkhorn_iterations: int = 3, | |
epsilon: float = 0.05, | |
temperature: float = 0.1, | |
crops_for_assign: List[int] = [0, 1], | |
num_crops: List[int] = [2], | |
num_prototypes: int = 3000, | |
init_cfg: Optional[Union[List[dict], dict]] = None): | |
super().__init__(init_cfg=init_cfg) | |
self.sinkhorn_iterations = sinkhorn_iterations | |
self.epsilon = epsilon | |
self.temperature = temperature | |
self.crops_for_assign = crops_for_assign | |
self.num_crops = num_crops | |
self.use_queue = False | |
self.queue = None | |
self.world_size = dist.get_world_size() if dist.is_initialized() else 1 | |
# prototype layer | |
self.prototypes = None | |
if isinstance(num_prototypes, list): | |
self.prototypes = MultiPrototypes(feat_dim, num_prototypes) | |
elif num_prototypes > 0: | |
self.prototypes = nn.Linear(feat_dim, num_prototypes, bias=False) | |
assert self.prototypes is not None | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
"""Forward function of SwAV loss. | |
Args: | |
x (torch.Tensor): NxC input features. | |
Returns: | |
torch.Tensor: The returned loss. | |
""" | |
# normalize the prototypes | |
with torch.no_grad(): | |
w = self.prototypes.weight.data.clone() | |
w = nn.functional.normalize(w, dim=1, p=2) | |
self.prototypes.weight.copy_(w) | |
embedding, output = x, self.prototypes(x) | |
embedding = embedding.detach() | |
bs = int(embedding.size(0) / sum(self.num_crops)) | |
loss = 0 | |
for i, crop_id in enumerate(self.crops_for_assign): | |
with torch.no_grad(): | |
out = output[bs * crop_id:bs * (crop_id + 1)].detach() | |
# time to use the queue | |
if self.queue is not None: | |
if self.use_queue or not torch.all(self.queue[i, | |
-1, :] == 0): | |
self.use_queue = True | |
out = torch.cat( | |
(torch.mm(self.queue[i], | |
self.prototypes.weight.t()), out)) | |
# fill the queue | |
self.queue[i, bs:] = self.queue[i, :-bs].clone() | |
self.queue[i, :bs] = embedding[crop_id * bs:(crop_id + 1) * | |
bs] | |
# get assignments (batch_size * num_prototypes) | |
q = distributed_sinkhorn(out, self.sinkhorn_iterations, | |
self.world_size, self.epsilon)[-bs:] | |
# cluster assignment prediction | |
subloss = 0 | |
for v in np.delete(np.arange(np.sum(self.num_crops)), crop_id): | |
x = output[bs * v:bs * (v + 1)] / self.temperature | |
subloss -= torch.mean( | |
torch.sum(q * nn.functional.log_softmax(x, dim=1), dim=1)) | |
loss += subloss / (np.sum(self.num_crops) - 1) | |
loss /= len(self.crops_for_assign) | |
return loss | |