Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import Dict, Optional, Sequence, Tuple | |
import torch | |
import torch.nn as nn | |
from mmcv.cnn import build_activation_layer, build_norm_layer | |
from mmengine.model import BaseModule, ModuleList | |
from mmpretrain.registry import MODELS | |
from .cls_head import ClsHead | |
class LinearBlock(BaseModule): | |
"""Linear block for StackedLinearClsHead.""" | |
def __init__(self, | |
in_channels, | |
out_channels, | |
dropout_rate=0., | |
norm_cfg=None, | |
act_cfg=None, | |
init_cfg=None): | |
super().__init__(init_cfg=init_cfg) | |
self.fc = nn.Linear(in_channels, out_channels) | |
self.norm = None | |
self.act = None | |
self.dropout = None | |
if norm_cfg is not None: | |
self.norm = build_norm_layer(norm_cfg, out_channels)[1] | |
if act_cfg is not None: | |
self.act = build_activation_layer(act_cfg) | |
if dropout_rate > 0: | |
self.dropout = nn.Dropout(p=dropout_rate) | |
def forward(self, x): | |
"""The forward process.""" | |
x = self.fc(x) | |
if self.norm is not None: | |
x = self.norm(x) | |
if self.act is not None: | |
x = self.act(x) | |
if self.dropout is not None: | |
x = self.dropout(x) | |
return x | |
class StackedLinearClsHead(ClsHead): | |
"""Classifier head with several hidden fc layer and a output fc layer. | |
Args: | |
num_classes (int): Number of categories. | |
in_channels (int): Number of channels in the input feature map. | |
mid_channels (Sequence[int]): Number of channels in the hidden fc | |
layers. | |
dropout_rate (float): Dropout rate after each hidden fc layer, | |
except the last layer. Defaults to 0. | |
norm_cfg (dict, optional): Config dict of normalization layer after | |
each hidden fc layer, except the last layer. Defaults to None. | |
act_cfg (dict, optional): Config dict of activation function after each | |
hidden layer, except the last layer. Defaults to use "ReLU". | |
""" | |
def __init__(self, | |
num_classes: int, | |
in_channels: int, | |
mid_channels: Sequence[int], | |
dropout_rate: float = 0., | |
norm_cfg: Optional[Dict] = None, | |
act_cfg: Optional[Dict] = dict(type='ReLU'), | |
**kwargs): | |
super(StackedLinearClsHead, self).__init__(**kwargs) | |
self.num_classes = num_classes | |
self.in_channels = in_channels | |
if self.num_classes <= 0: | |
raise ValueError( | |
f'num_classes={num_classes} must be a positive integer') | |
assert isinstance(mid_channels, Sequence), \ | |
f'`mid_channels` of StackedLinearClsHead should be a sequence, ' \ | |
f'instead of {type(mid_channels)}' | |
self.mid_channels = mid_channels | |
self.dropout_rate = dropout_rate | |
self.norm_cfg = norm_cfg | |
self.act_cfg = act_cfg | |
self._init_layers() | |
def _init_layers(self): | |
""""Init layers.""" | |
self.layers = ModuleList() | |
in_channels = self.in_channels | |
for hidden_channels in self.mid_channels: | |
self.layers.append( | |
LinearBlock( | |
in_channels, | |
hidden_channels, | |
dropout_rate=self.dropout_rate, | |
norm_cfg=self.norm_cfg, | |
act_cfg=self.act_cfg)) | |
in_channels = hidden_channels | |
self.layers.append( | |
LinearBlock( | |
self.mid_channels[-1], | |
self.num_classes, | |
dropout_rate=0., | |
norm_cfg=None, | |
act_cfg=None)) | |
def pre_logits(self, feats: Tuple[torch.Tensor]) -> torch.Tensor: | |
"""The process before the final classification head. | |
The input ``feats`` is a tuple of tensor, and each tensor is the | |
feature of a backbone stage. | |
""" | |
x = feats[-1] | |
for layer in self.layers[:-1]: | |
x = layer(x) | |
return x | |
def fc(self): | |
"""Full connected layer.""" | |
return self.layers[-1] | |
def forward(self, feats: Tuple[torch.Tensor]) -> torch.Tensor: | |
"""The forward process.""" | |
pre_logits = self.pre_logits(feats) | |
# The final classification head. | |
cls_score = self.fc(pre_logits) | |
return cls_score | |