KyanChen's picture
Upload 303 files
4d0eb62
raw
history blame
4.54 kB
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, Optional, Sequence, Tuple
import torch
import torch.nn as nn
from mmcv.cnn import build_activation_layer, build_norm_layer
from mmengine.model import BaseModule, ModuleList
from mmpretrain.registry import MODELS
from .cls_head import ClsHead
class LinearBlock(BaseModule):
"""Linear block for StackedLinearClsHead."""
def __init__(self,
in_channels,
out_channels,
dropout_rate=0.,
norm_cfg=None,
act_cfg=None,
init_cfg=None):
super().__init__(init_cfg=init_cfg)
self.fc = nn.Linear(in_channels, out_channels)
self.norm = None
self.act = None
self.dropout = None
if norm_cfg is not None:
self.norm = build_norm_layer(norm_cfg, out_channels)[1]
if act_cfg is not None:
self.act = build_activation_layer(act_cfg)
if dropout_rate > 0:
self.dropout = nn.Dropout(p=dropout_rate)
def forward(self, x):
"""The forward process."""
x = self.fc(x)
if self.norm is not None:
x = self.norm(x)
if self.act is not None:
x = self.act(x)
if self.dropout is not None:
x = self.dropout(x)
return x
@MODELS.register_module()
class StackedLinearClsHead(ClsHead):
"""Classifier head with several hidden fc layer and a output fc layer.
Args:
num_classes (int): Number of categories.
in_channels (int): Number of channels in the input feature map.
mid_channels (Sequence[int]): Number of channels in the hidden fc
layers.
dropout_rate (float): Dropout rate after each hidden fc layer,
except the last layer. Defaults to 0.
norm_cfg (dict, optional): Config dict of normalization layer after
each hidden fc layer, except the last layer. Defaults to None.
act_cfg (dict, optional): Config dict of activation function after each
hidden layer, except the last layer. Defaults to use "ReLU".
"""
def __init__(self,
num_classes: int,
in_channels: int,
mid_channels: Sequence[int],
dropout_rate: float = 0.,
norm_cfg: Optional[Dict] = None,
act_cfg: Optional[Dict] = dict(type='ReLU'),
**kwargs):
super(StackedLinearClsHead, self).__init__(**kwargs)
self.num_classes = num_classes
self.in_channels = in_channels
if self.num_classes <= 0:
raise ValueError(
f'num_classes={num_classes} must be a positive integer')
assert isinstance(mid_channels, Sequence), \
f'`mid_channels` of StackedLinearClsHead should be a sequence, ' \
f'instead of {type(mid_channels)}'
self.mid_channels = mid_channels
self.dropout_rate = dropout_rate
self.norm_cfg = norm_cfg
self.act_cfg = act_cfg
self._init_layers()
def _init_layers(self):
""""Init layers."""
self.layers = ModuleList()
in_channels = self.in_channels
for hidden_channels in self.mid_channels:
self.layers.append(
LinearBlock(
in_channels,
hidden_channels,
dropout_rate=self.dropout_rate,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg))
in_channels = hidden_channels
self.layers.append(
LinearBlock(
self.mid_channels[-1],
self.num_classes,
dropout_rate=0.,
norm_cfg=None,
act_cfg=None))
def pre_logits(self, feats: Tuple[torch.Tensor]) -> torch.Tensor:
"""The process before the final classification head.
The input ``feats`` is a tuple of tensor, and each tensor is the
feature of a backbone stage.
"""
x = feats[-1]
for layer in self.layers[:-1]:
x = layer(x)
return x
@property
def fc(self):
"""Full connected layer."""
return self.layers[-1]
def forward(self, feats: Tuple[torch.Tensor]) -> torch.Tensor:
"""The forward process."""
pre_logits = self.pre_logits(feats)
# The final classification head.
cls_score = self.fc(pre_logits)
return cls_score