Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import List, Optional, Tuple, Union | |
import torch | |
import torch.nn as nn | |
from mmengine.dist import all_reduce, get_world_size | |
from mmengine.model import BaseModule | |
from mmpretrain.registry import MODELS | |
class LatentPredictHead(BaseModule): | |
"""Head for latent feature prediction. | |
This head builds a predictor, which can be any registered neck component. | |
For example, BYOL and SimSiam call this head and build NonLinearNeck. | |
It also implements similarity loss between two forward features. | |
Args: | |
loss (dict): Config dict for the loss. | |
predictor (dict): Config dict for the predictor. | |
init_cfg (dict or List[dict], optional): Initialization config dict. | |
Defaults to None. | |
""" | |
def __init__(self, | |
loss: dict, | |
predictor: dict, | |
init_cfg: Optional[Union[dict, List[dict]]] = None) -> None: | |
super().__init__(init_cfg=init_cfg) | |
self.loss_module = MODELS.build(loss) | |
self.predictor = MODELS.build(predictor) | |
def loss(self, input: torch.Tensor, | |
target: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: | |
"""Forward head. | |
Args: | |
input (torch.Tensor): NxC input features. | |
target (torch.Tensor): NxC target features. | |
Returns: | |
torch.Tensor: The latent predict loss. | |
""" | |
pred = self.predictor([input])[0] | |
target = target.detach() | |
loss = self.loss_module(pred, target) | |
return loss | |
class LatentCrossCorrelationHead(BaseModule): | |
"""Head for latent feature cross correlation. | |
Part of the code is borrowed from `script | |
<https://github.com/facebookresearch/barlowtwins/blob/main/main.py>`_. | |
Args: | |
in_channels (int): Number of input channels. | |
loss (dict): Config dict for module of loss functions. | |
init_cfg (dict or List[dict], optional): Initialization config dict. | |
Defaults to None. | |
""" | |
def __init__(self, | |
in_channels: int, | |
loss: dict, | |
init_cfg: Optional[Union[dict, List[dict]]] = None) -> None: | |
super().__init__(init_cfg=init_cfg) | |
self.world_size = get_world_size() | |
self.bn = nn.BatchNorm1d(in_channels, affine=False) | |
self.loss_module = MODELS.build(loss) | |
def loss(self, input: torch.Tensor, target: torch.Tensor) -> torch.Tensor: | |
"""Forward head. | |
Args: | |
input (torch.Tensor): NxC input features. | |
target (torch.Tensor): NxC target features. | |
Returns: | |
torch.Tensor: The cross correlation loss. | |
""" | |
# cross-correlation matrix | |
cross_correlation_matrix = self.bn(input).T @ self.bn(target) | |
cross_correlation_matrix.div_(input.size(0) * self.world_size) | |
all_reduce(cross_correlation_matrix) | |
loss = self.loss_module(cross_correlation_matrix) | |
return loss | |