Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import warnings | |
from typing import List, Tuple | |
import torch | |
import torch.nn as nn | |
from mmpretrain.registry import MODELS | |
from .vision_transformer_head import VisionTransformerClsHead | |
class DeiTClsHead(VisionTransformerClsHead): | |
"""Distilled Vision Transformer classifier head. | |
Comparing with the :class:`VisionTransformerClsHead`, this head adds an | |
extra linear layer to handle the dist token. The final classification score | |
is the average of both linear transformation results of ``cls_token`` and | |
``dist_token``. | |
Args: | |
num_classes (int): Number of categories excluding the background | |
category. | |
in_channels (int): Number of channels in the input feature map. | |
hidden_dim (int, optional): Number of the dimensions for hidden layer. | |
Defaults to None, which means no extra hidden layer. | |
act_cfg (dict): The activation config. Only available during | |
pre-training. Defaults to ``dict(type='Tanh')``. | |
init_cfg (dict): The extra initialization configs. Defaults to | |
``dict(type='Constant', layer='Linear', val=0)``. | |
""" | |
def _init_layers(self): | |
""""Init extra hidden linear layer to handle dist token if exists.""" | |
super(DeiTClsHead, self)._init_layers() | |
if self.hidden_dim is None: | |
head_dist = nn.Linear(self.in_channels, self.num_classes) | |
else: | |
head_dist = nn.Linear(self.hidden_dim, self.num_classes) | |
self.layers.add_module('head_dist', head_dist) | |
def pre_logits(self, | |
feats: Tuple[List[torch.Tensor]]) -> Tuple[torch.Tensor]: | |
"""The process before the final classification head. | |
The input ``feats`` is a tuple of list of tensor, and each tensor is | |
the feature of a backbone stage. In ``DeiTClsHead``, we obtain the | |
feature of the last stage and forward in hidden layer if exists. | |
""" | |
feat = feats[-1] # Obtain feature of the last scale. | |
# For backward-compatibility with the previous ViT output | |
if len(feat) == 3: | |
_, cls_token, dist_token = feat | |
else: | |
cls_token, dist_token = feat | |
if self.hidden_dim is None: | |
return cls_token, dist_token | |
else: | |
cls_token = self.layers.act(self.layers.pre_logits(cls_token)) | |
dist_token = self.layers.act(self.layers.pre_logits(dist_token)) | |
return cls_token, dist_token | |
def forward(self, feats: Tuple[List[torch.Tensor]]) -> torch.Tensor: | |
"""The forward process.""" | |
if self.training: | |
warnings.warn('MMPretrain cannot train the ' | |
'distilled version DeiT.') | |
cls_token, dist_token = self.pre_logits(feats) | |
# The final classification head. | |
cls_score = (self.layers.head(cls_token) + | |
self.layers.head_dist(dist_token)) / 2 | |
return cls_score | |