Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import List, Sequence, Tuple | |
import torch | |
import torch.nn as nn | |
from mmpretrain.evaluation.metrics import Accuracy | |
from mmpretrain.registry import MODELS | |
from mmpretrain.structures import DataSample | |
from .cls_head import ClsHead | |
class ConformerHead(ClsHead): | |
"""Linear classifier head. | |
Args: | |
num_classes (int): Number of categories excluding the background | |
category. | |
in_channels (Sequence[int]): Number of channels in the input | |
feature map. | |
init_cfg (dict | optional): The extra init config of layers. | |
Defaults to use ``dict(type='Normal', layer='Linear', std=0.01)``. | |
""" | |
def __init__( | |
self, | |
num_classes: int, | |
in_channels: Sequence[int], # [conv_dim, trans_dim] | |
init_cfg: dict = dict(type='TruncNormal', layer='Linear', std=.02), | |
**kwargs): | |
super(ConformerHead, self).__init__(init_cfg=init_cfg, **kwargs) | |
self.in_channels = in_channels | |
self.num_classes = num_classes | |
self.init_cfg = init_cfg | |
if self.num_classes <= 0: | |
raise ValueError( | |
f'num_classes={num_classes} must be a positive integer') | |
self.conv_cls_head = nn.Linear(self.in_channels[0], num_classes) | |
self.trans_cls_head = nn.Linear(self.in_channels[1], num_classes) | |
def pre_logits(self, feats: Tuple[List[torch.Tensor]]) -> torch.Tensor: | |
"""The process before the final classification head. | |
The input ``feats`` is a tuple of tensor, and each tensor is the | |
feature of a backbone stage. In ``ConformerHead``, we just obtain the | |
feature of the last stage. | |
""" | |
# The ConformerHead doesn't have other module, | |
# just return after unpacking. | |
return feats[-1] | |
def forward(self, feats: Tuple[List[torch.Tensor]]) -> Tuple[torch.Tensor]: | |
"""The forward process.""" | |
x = self.pre_logits(feats) | |
# There are two outputs in the Conformer model | |
assert len(x) == 2 | |
conv_cls_score = self.conv_cls_head(x[0]) | |
tran_cls_score = self.trans_cls_head(x[1]) | |
return conv_cls_score, tran_cls_score | |
def predict(self, | |
feats: Tuple[List[torch.Tensor]], | |
data_samples: List[DataSample] = None) -> List[DataSample]: | |
"""Inference without augmentation. | |
Args: | |
feats (tuple[Tensor]): The features extracted from the backbone. | |
Multiple stage inputs are acceptable but only the last stage | |
will be used to classify. The shape of every item should be | |
``(num_samples, num_classes)``. | |
data_samples (List[DataSample], optional): The annotation | |
data of every samples. If not None, set ``pred_label`` of | |
the input data samples. Defaults to None. | |
Returns: | |
List[DataSample]: A list of data samples which contains the | |
predicted results. | |
""" | |
# The part can be traced by torch.fx | |
conv_cls_score, tran_cls_score = self(feats) | |
cls_score = conv_cls_score + tran_cls_score | |
# The part can not be traced by torch.fx | |
predictions = self._get_predictions(cls_score, data_samples) | |
return predictions | |
def _get_loss(self, cls_score: Tuple[torch.Tensor], | |
data_samples: List[DataSample], **kwargs) -> dict: | |
"""Unpack data samples and compute loss.""" | |
# Unpack data samples and pack targets | |
if 'gt_score' in data_samples[0]: | |
# Batch augmentation may convert labels to one-hot format scores. | |
target = torch.stack([i.gt_score for i in data_samples]) | |
else: | |
target = torch.cat([i.gt_label for i in data_samples]) | |
# compute loss | |
losses = dict() | |
loss = sum([ | |
self.loss_module( | |
score, target, avg_factor=score.size(0), **kwargs) | |
for score in cls_score | |
]) | |
losses['loss'] = loss | |
# compute accuracy | |
if self.cal_acc: | |
assert target.ndim == 1, 'If you enable batch augmentation ' \ | |
'like mixup during training, `cal_acc` is pointless.' | |
acc = Accuracy.calculate( | |
cls_score[0] + cls_score[1], target, topk=self.topk) | |
losses.update( | |
{f'accuracy_top-{k}': a | |
for k, a in zip(self.topk, acc)}) | |
return losses | |