Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import itertools | |
from abc import ABCMeta, abstractmethod | |
from typing import Sequence, Type, TypeVar | |
import cv2 | |
import mmcv | |
import numpy as np | |
import pycocotools.mask as maskUtils | |
import shapely.geometry as geometry | |
import torch | |
from mmcv.ops.roi_align import roi_align | |
T = TypeVar('T') | |
class BaseInstanceMasks(metaclass=ABCMeta): | |
"""Base class for instance masks.""" | |
def rescale(self, scale, interpolation='nearest'): | |
"""Rescale masks as large as possible while keeping the aspect ratio. | |
For details can refer to `mmcv.imrescale`. | |
Args: | |
scale (tuple[int]): The maximum size (h, w) of rescaled mask. | |
interpolation (str): Same as :func:`mmcv.imrescale`. | |
Returns: | |
BaseInstanceMasks: The rescaled masks. | |
""" | |
def resize(self, out_shape, interpolation='nearest'): | |
"""Resize masks to the given out_shape. | |
Args: | |
out_shape: Target (h, w) of resized mask. | |
interpolation (str): See :func:`mmcv.imresize`. | |
Returns: | |
BaseInstanceMasks: The resized masks. | |
""" | |
def flip(self, flip_direction='horizontal'): | |
"""Flip masks alone the given direction. | |
Args: | |
flip_direction (str): Either 'horizontal' or 'vertical'. | |
Returns: | |
BaseInstanceMasks: The flipped masks. | |
""" | |
def pad(self, out_shape, pad_val): | |
"""Pad masks to the given size of (h, w). | |
Args: | |
out_shape (tuple[int]): Target (h, w) of padded mask. | |
pad_val (int): The padded value. | |
Returns: | |
BaseInstanceMasks: The padded masks. | |
""" | |
def crop(self, bbox): | |
"""Crop each mask by the given bbox. | |
Args: | |
bbox (ndarray): Bbox in format [x1, y1, x2, y2], shape (4, ). | |
Return: | |
BaseInstanceMasks: The cropped masks. | |
""" | |
def crop_and_resize(self, | |
bboxes, | |
out_shape, | |
inds, | |
device, | |
interpolation='bilinear', | |
binarize=True): | |
"""Crop and resize masks by the given bboxes. | |
This function is mainly used in mask targets computation. | |
It firstly align mask to bboxes by assigned_inds, then crop mask by the | |
assigned bbox and resize to the size of (mask_h, mask_w) | |
Args: | |
bboxes (Tensor): Bboxes in format [x1, y1, x2, y2], shape (N, 4) | |
out_shape (tuple[int]): Target (h, w) of resized mask | |
inds (ndarray): Indexes to assign masks to each bbox, | |
shape (N,) and values should be between [0, num_masks - 1]. | |
device (str): Device of bboxes | |
interpolation (str): See `mmcv.imresize` | |
binarize (bool): if True fractional values are rounded to 0 or 1 | |
after the resize operation. if False and unsupported an error | |
will be raised. Defaults to True. | |
Return: | |
BaseInstanceMasks: the cropped and resized masks. | |
""" | |
def expand(self, expanded_h, expanded_w, top, left): | |
"""see :class:`Expand`.""" | |
def areas(self): | |
"""ndarray: areas of each instance.""" | |
def to_ndarray(self): | |
"""Convert masks to the format of ndarray. | |
Return: | |
ndarray: Converted masks in the format of ndarray. | |
""" | |
def to_tensor(self, dtype, device): | |
"""Convert masks to the format of Tensor. | |
Args: | |
dtype (str): Dtype of converted mask. | |
device (torch.device): Device of converted masks. | |
Returns: | |
Tensor: Converted masks in the format of Tensor. | |
""" | |
def translate(self, | |
out_shape, | |
offset, | |
direction='horizontal', | |
border_value=0, | |
interpolation='bilinear'): | |
"""Translate the masks. | |
Args: | |
out_shape (tuple[int]): Shape for output mask, format (h, w). | |
offset (int | float): The offset for translate. | |
direction (str): The translate direction, either "horizontal" | |
or "vertical". | |
border_value (int | float): Border value. Default 0. | |
interpolation (str): Same as :func:`mmcv.imtranslate`. | |
Returns: | |
Translated masks. | |
""" | |
def shear(self, | |
out_shape, | |
magnitude, | |
direction='horizontal', | |
border_value=0, | |
interpolation='bilinear'): | |
"""Shear the masks. | |
Args: | |
out_shape (tuple[int]): Shape for output mask, format (h, w). | |
magnitude (int | float): The magnitude used for shear. | |
direction (str): The shear direction, either "horizontal" | |
or "vertical". | |
border_value (int | tuple[int]): Value used in case of a | |
constant border. Default 0. | |
interpolation (str): Same as in :func:`mmcv.imshear`. | |
Returns: | |
ndarray: Sheared masks. | |
""" | |
def rotate(self, out_shape, angle, center=None, scale=1.0, border_value=0): | |
"""Rotate the masks. | |
Args: | |
out_shape (tuple[int]): Shape for output mask, format (h, w). | |
angle (int | float): Rotation angle in degrees. Positive values | |
mean counter-clockwise rotation. | |
center (tuple[float], optional): Center point (w, h) of the | |
rotation in source image. If not specified, the center of | |
the image will be used. | |
scale (int | float): Isotropic scale factor. | |
border_value (int | float): Border value. Default 0 for masks. | |
Returns: | |
Rotated masks. | |
""" | |
def get_bboxes(self, dst_type='hbb'): | |
"""Get the certain type boxes from masks. | |
Please refer to ``mmdet.structures.bbox.box_type`` for more details of | |
the box type. | |
Args: | |
dst_type: Destination box type. | |
Returns: | |
:obj:`BaseBoxes`: Certain type boxes. | |
""" | |
from ..bbox import get_box_type | |
_, box_type_cls = get_box_type(dst_type) | |
return box_type_cls.from_instance_masks(self) | |
def cat(cls: Type[T], masks: Sequence[T]) -> T: | |
"""Concatenate a sequence of masks into one single mask instance. | |
Args: | |
masks (Sequence[T]): A sequence of mask instances. | |
Returns: | |
T: Concatenated mask instance. | |
""" | |
class BitmapMasks(BaseInstanceMasks): | |
"""This class represents masks in the form of bitmaps. | |
Args: | |
masks (ndarray): ndarray of masks in shape (N, H, W), where N is | |
the number of objects. | |
height (int): height of masks | |
width (int): width of masks | |
Example: | |
>>> from mmdet.data_elements.mask.structures import * # NOQA | |
>>> num_masks, H, W = 3, 32, 32 | |
>>> rng = np.random.RandomState(0) | |
>>> masks = (rng.rand(num_masks, H, W) > 0.1).astype(np.int64) | |
>>> self = BitmapMasks(masks, height=H, width=W) | |
>>> # demo crop_and_resize | |
>>> num_boxes = 5 | |
>>> bboxes = np.array([[0, 0, 30, 10.0]] * num_boxes) | |
>>> out_shape = (14, 14) | |
>>> inds = torch.randint(0, len(self), size=(num_boxes,)) | |
>>> device = 'cpu' | |
>>> interpolation = 'bilinear' | |
>>> new = self.crop_and_resize( | |
... bboxes, out_shape, inds, device, interpolation) | |
>>> assert len(new) == num_boxes | |
>>> assert new.height, new.width == out_shape | |
""" | |
def __init__(self, masks, height, width): | |
self.height = height | |
self.width = width | |
if len(masks) == 0: | |
self.masks = np.empty((0, self.height, self.width), dtype=np.uint8) | |
else: | |
assert isinstance(masks, (list, np.ndarray)) | |
if isinstance(masks, list): | |
assert isinstance(masks[0], np.ndarray) | |
assert masks[0].ndim == 2 # (H, W) | |
else: | |
assert masks.ndim == 3 # (N, H, W) | |
self.masks = np.stack(masks).reshape(-1, height, width) | |
assert self.masks.shape[1] == self.height | |
assert self.masks.shape[2] == self.width | |
def __getitem__(self, index): | |
"""Index the BitmapMask. | |
Args: | |
index (int | ndarray): Indices in the format of integer or ndarray. | |
Returns: | |
:obj:`BitmapMasks`: Indexed bitmap masks. | |
""" | |
masks = self.masks[index].reshape(-1, self.height, self.width) | |
return BitmapMasks(masks, self.height, self.width) | |
def __iter__(self): | |
return iter(self.masks) | |
def __repr__(self): | |
s = self.__class__.__name__ + '(' | |
s += f'num_masks={len(self.masks)}, ' | |
s += f'height={self.height}, ' | |
s += f'width={self.width})' | |
return s | |
def __len__(self): | |
"""Number of masks.""" | |
return len(self.masks) | |
def rescale(self, scale, interpolation='nearest'): | |
"""See :func:`BaseInstanceMasks.rescale`.""" | |
if len(self.masks) == 0: | |
new_w, new_h = mmcv.rescale_size((self.width, self.height), scale) | |
rescaled_masks = np.empty((0, new_h, new_w), dtype=np.uint8) | |
else: | |
rescaled_masks = np.stack([ | |
mmcv.imrescale(mask, scale, interpolation=interpolation) | |
for mask in self.masks | |
]) | |
height, width = rescaled_masks.shape[1:] | |
return BitmapMasks(rescaled_masks, height, width) | |
def resize(self, out_shape, interpolation='nearest'): | |
"""See :func:`BaseInstanceMasks.resize`.""" | |
if len(self.masks) == 0: | |
resized_masks = np.empty((0, *out_shape), dtype=np.uint8) | |
else: | |
resized_masks = np.stack([ | |
mmcv.imresize( | |
mask, out_shape[::-1], interpolation=interpolation) | |
for mask in self.masks | |
]) | |
return BitmapMasks(resized_masks, *out_shape) | |
def flip(self, flip_direction='horizontal'): | |
"""See :func:`BaseInstanceMasks.flip`.""" | |
assert flip_direction in ('horizontal', 'vertical', 'diagonal') | |
if len(self.masks) == 0: | |
flipped_masks = self.masks | |
else: | |
flipped_masks = np.stack([ | |
mmcv.imflip(mask, direction=flip_direction) | |
for mask in self.masks | |
]) | |
return BitmapMasks(flipped_masks, self.height, self.width) | |
def pad(self, out_shape, pad_val=0): | |
"""See :func:`BaseInstanceMasks.pad`.""" | |
if len(self.masks) == 0: | |
padded_masks = np.empty((0, *out_shape), dtype=np.uint8) | |
else: | |
padded_masks = np.stack([ | |
mmcv.impad(mask, shape=out_shape, pad_val=pad_val) | |
for mask in self.masks | |
]) | |
return BitmapMasks(padded_masks, *out_shape) | |
def crop(self, bbox): | |
"""See :func:`BaseInstanceMasks.crop`.""" | |
assert isinstance(bbox, np.ndarray) | |
assert bbox.ndim == 1 | |
# clip the boundary | |
bbox = bbox.copy() | |
bbox[0::2] = np.clip(bbox[0::2], 0, self.width) | |
bbox[1::2] = np.clip(bbox[1::2], 0, self.height) | |
x1, y1, x2, y2 = bbox | |
w = np.maximum(x2 - x1, 1) | |
h = np.maximum(y2 - y1, 1) | |
if len(self.masks) == 0: | |
cropped_masks = np.empty((0, h, w), dtype=np.uint8) | |
else: | |
cropped_masks = self.masks[:, y1:y1 + h, x1:x1 + w] | |
return BitmapMasks(cropped_masks, h, w) | |
def crop_and_resize(self, | |
bboxes, | |
out_shape, | |
inds, | |
device='cpu', | |
interpolation='bilinear', | |
binarize=True): | |
"""See :func:`BaseInstanceMasks.crop_and_resize`.""" | |
if len(self.masks) == 0: | |
empty_masks = np.empty((0, *out_shape), dtype=np.uint8) | |
return BitmapMasks(empty_masks, *out_shape) | |
# convert bboxes to tensor | |
if isinstance(bboxes, np.ndarray): | |
bboxes = torch.from_numpy(bboxes).to(device=device) | |
if isinstance(inds, np.ndarray): | |
inds = torch.from_numpy(inds).to(device=device) | |
num_bbox = bboxes.shape[0] | |
fake_inds = torch.arange( | |
num_bbox, device=device).to(dtype=bboxes.dtype)[:, None] | |
rois = torch.cat([fake_inds, bboxes], dim=1) # Nx5 | |
rois = rois.to(device=device) | |
if num_bbox > 0: | |
gt_masks_th = torch.from_numpy(self.masks).to(device).index_select( | |
0, inds).to(dtype=rois.dtype) | |
targets = roi_align(gt_masks_th[:, None, :, :], rois, out_shape, | |
1.0, 0, 'avg', True).squeeze(1) | |
if binarize: | |
resized_masks = (targets >= 0.5).cpu().numpy() | |
else: | |
resized_masks = targets.cpu().numpy() | |
else: | |
resized_masks = [] | |
return BitmapMasks(resized_masks, *out_shape) | |
def expand(self, expanded_h, expanded_w, top, left): | |
"""See :func:`BaseInstanceMasks.expand`.""" | |
if len(self.masks) == 0: | |
expanded_mask = np.empty((0, expanded_h, expanded_w), | |
dtype=np.uint8) | |
else: | |
expanded_mask = np.zeros((len(self), expanded_h, expanded_w), | |
dtype=np.uint8) | |
expanded_mask[:, top:top + self.height, | |
left:left + self.width] = self.masks | |
return BitmapMasks(expanded_mask, expanded_h, expanded_w) | |
def translate(self, | |
out_shape, | |
offset, | |
direction='horizontal', | |
border_value=0, | |
interpolation='bilinear'): | |
"""Translate the BitmapMasks. | |
Args: | |
out_shape (tuple[int]): Shape for output mask, format (h, w). | |
offset (int | float): The offset for translate. | |
direction (str): The translate direction, either "horizontal" | |
or "vertical". | |
border_value (int | float): Border value. Default 0 for masks. | |
interpolation (str): Same as :func:`mmcv.imtranslate`. | |
Returns: | |
BitmapMasks: Translated BitmapMasks. | |
Example: | |
>>> from mmdet.data_elements.mask.structures import BitmapMasks | |
>>> self = BitmapMasks.random(dtype=np.uint8) | |
>>> out_shape = (32, 32) | |
>>> offset = 4 | |
>>> direction = 'horizontal' | |
>>> border_value = 0 | |
>>> interpolation = 'bilinear' | |
>>> # Note, There seem to be issues when: | |
>>> # * the mask dtype is not supported by cv2.AffineWarp | |
>>> new = self.translate(out_shape, offset, direction, | |
>>> border_value, interpolation) | |
>>> assert len(new) == len(self) | |
>>> assert new.height, new.width == out_shape | |
""" | |
if len(self.masks) == 0: | |
translated_masks = np.empty((0, *out_shape), dtype=np.uint8) | |
else: | |
masks = self.masks | |
if masks.shape[-2:] != out_shape: | |
empty_masks = np.zeros((masks.shape[0], *out_shape), | |
dtype=masks.dtype) | |
min_h = min(out_shape[0], masks.shape[1]) | |
min_w = min(out_shape[1], masks.shape[2]) | |
empty_masks[:, :min_h, :min_w] = masks[:, :min_h, :min_w] | |
masks = empty_masks | |
translated_masks = mmcv.imtranslate( | |
masks.transpose((1, 2, 0)), | |
offset, | |
direction, | |
border_value=border_value, | |
interpolation=interpolation) | |
if translated_masks.ndim == 2: | |
translated_masks = translated_masks[:, :, None] | |
translated_masks = translated_masks.transpose( | |
(2, 0, 1)).astype(self.masks.dtype) | |
return BitmapMasks(translated_masks, *out_shape) | |
def shear(self, | |
out_shape, | |
magnitude, | |
direction='horizontal', | |
border_value=0, | |
interpolation='bilinear'): | |
"""Shear the BitmapMasks. | |
Args: | |
out_shape (tuple[int]): Shape for output mask, format (h, w). | |
magnitude (int | float): The magnitude used for shear. | |
direction (str): The shear direction, either "horizontal" | |
or "vertical". | |
border_value (int | tuple[int]): Value used in case of a | |
constant border. | |
interpolation (str): Same as in :func:`mmcv.imshear`. | |
Returns: | |
BitmapMasks: The sheared masks. | |
""" | |
if len(self.masks) == 0: | |
sheared_masks = np.empty((0, *out_shape), dtype=np.uint8) | |
else: | |
sheared_masks = mmcv.imshear( | |
self.masks.transpose((1, 2, 0)), | |
magnitude, | |
direction, | |
border_value=border_value, | |
interpolation=interpolation) | |
if sheared_masks.ndim == 2: | |
sheared_masks = sheared_masks[:, :, None] | |
sheared_masks = sheared_masks.transpose( | |
(2, 0, 1)).astype(self.masks.dtype) | |
return BitmapMasks(sheared_masks, *out_shape) | |
def rotate(self, | |
out_shape, | |
angle, | |
center=None, | |
scale=1.0, | |
border_value=0, | |
interpolation='bilinear'): | |
"""Rotate the BitmapMasks. | |
Args: | |
out_shape (tuple[int]): Shape for output mask, format (h, w). | |
angle (int | float): Rotation angle in degrees. Positive values | |
mean counter-clockwise rotation. | |
center (tuple[float], optional): Center point (w, h) of the | |
rotation in source image. If not specified, the center of | |
the image will be used. | |
scale (int | float): Isotropic scale factor. | |
border_value (int | float): Border value. Default 0 for masks. | |
interpolation (str): Same as in :func:`mmcv.imrotate`. | |
Returns: | |
BitmapMasks: Rotated BitmapMasks. | |
""" | |
if len(self.masks) == 0: | |
rotated_masks = np.empty((0, *out_shape), dtype=self.masks.dtype) | |
else: | |
rotated_masks = mmcv.imrotate( | |
self.masks.transpose((1, 2, 0)), | |
angle, | |
center=center, | |
scale=scale, | |
border_value=border_value, | |
interpolation=interpolation) | |
if rotated_masks.ndim == 2: | |
# case when only one mask, (h, w) | |
rotated_masks = rotated_masks[:, :, None] # (h, w, 1) | |
rotated_masks = rotated_masks.transpose( | |
(2, 0, 1)).astype(self.masks.dtype) | |
return BitmapMasks(rotated_masks, *out_shape) | |
def areas(self): | |
"""See :py:attr:`BaseInstanceMasks.areas`.""" | |
return self.masks.sum((1, 2)) | |
def to_ndarray(self): | |
"""See :func:`BaseInstanceMasks.to_ndarray`.""" | |
return self.masks | |
def to_tensor(self, dtype, device): | |
"""See :func:`BaseInstanceMasks.to_tensor`.""" | |
return torch.tensor(self.masks, dtype=dtype, device=device) | |
def random(cls, | |
num_masks=3, | |
height=32, | |
width=32, | |
dtype=np.uint8, | |
rng=None): | |
"""Generate random bitmap masks for demo / testing purposes. | |
Example: | |
>>> from mmdet.data_elements.mask.structures import BitmapMasks | |
>>> self = BitmapMasks.random() | |
>>> print('self = {}'.format(self)) | |
self = BitmapMasks(num_masks=3, height=32, width=32) | |
""" | |
from mmdet.utils.util_random import ensure_rng | |
rng = ensure_rng(rng) | |
masks = (rng.rand(num_masks, height, width) > 0.1).astype(dtype) | |
self = cls(masks, height=height, width=width) | |
return self | |
def cat(cls: Type[T], masks: Sequence[T]) -> T: | |
"""Concatenate a sequence of masks into one single mask instance. | |
Args: | |
masks (Sequence[BitmapMasks]): A sequence of mask instances. | |
Returns: | |
BitmapMasks: Concatenated mask instance. | |
""" | |
assert isinstance(masks, Sequence) | |
if len(masks) == 0: | |
raise ValueError('masks should not be an empty list.') | |
assert all(isinstance(m, cls) for m in masks) | |
mask_array = np.concatenate([m.masks for m in masks], axis=0) | |
return cls(mask_array, *mask_array.shape[1:]) | |
class PolygonMasks(BaseInstanceMasks): | |
"""This class represents masks in the form of polygons. | |
Polygons is a list of three levels. The first level of the list | |
corresponds to objects, the second level to the polys that compose the | |
object, the third level to the poly coordinates | |
Args: | |
masks (list[list[ndarray]]): The first level of the list | |
corresponds to objects, the second level to the polys that | |
compose the object, the third level to the poly coordinates | |
height (int): height of masks | |
width (int): width of masks | |
Example: | |
>>> from mmdet.data_elements.mask.structures import * # NOQA | |
>>> masks = [ | |
>>> [ np.array([0, 0, 10, 0, 10, 10., 0, 10, 0, 0]) ] | |
>>> ] | |
>>> height, width = 16, 16 | |
>>> self = PolygonMasks(masks, height, width) | |
>>> # demo translate | |
>>> new = self.translate((16, 16), 4., direction='horizontal') | |
>>> assert np.all(new.masks[0][0][1::2] == masks[0][0][1::2]) | |
>>> assert np.all(new.masks[0][0][0::2] == masks[0][0][0::2] + 4) | |
>>> # demo crop_and_resize | |
>>> num_boxes = 3 | |
>>> bboxes = np.array([[0, 0, 30, 10.0]] * num_boxes) | |
>>> out_shape = (16, 16) | |
>>> inds = torch.randint(0, len(self), size=(num_boxes,)) | |
>>> device = 'cpu' | |
>>> interpolation = 'bilinear' | |
>>> new = self.crop_and_resize( | |
... bboxes, out_shape, inds, device, interpolation) | |
>>> assert len(new) == num_boxes | |
>>> assert new.height, new.width == out_shape | |
""" | |
def __init__(self, masks, height, width): | |
assert isinstance(masks, list) | |
if len(masks) > 0: | |
assert isinstance(masks[0], list) | |
assert isinstance(masks[0][0], np.ndarray) | |
self.height = height | |
self.width = width | |
self.masks = masks | |
def __getitem__(self, index): | |
"""Index the polygon masks. | |
Args: | |
index (ndarray | List): The indices. | |
Returns: | |
:obj:`PolygonMasks`: The indexed polygon masks. | |
""" | |
if isinstance(index, np.ndarray): | |
if index.dtype == bool: | |
index = np.where(index)[0].tolist() | |
else: | |
index = index.tolist() | |
if isinstance(index, list): | |
masks = [self.masks[i] for i in index] | |
else: | |
try: | |
masks = self.masks[index] | |
except Exception: | |
raise ValueError( | |
f'Unsupported input of type {type(index)} for indexing!') | |
if len(masks) and isinstance(masks[0], np.ndarray): | |
masks = [masks] # ensure a list of three levels | |
return PolygonMasks(masks, self.height, self.width) | |
def __iter__(self): | |
return iter(self.masks) | |
def __repr__(self): | |
s = self.__class__.__name__ + '(' | |
s += f'num_masks={len(self.masks)}, ' | |
s += f'height={self.height}, ' | |
s += f'width={self.width})' | |
return s | |
def __len__(self): | |
"""Number of masks.""" | |
return len(self.masks) | |
def rescale(self, scale, interpolation=None): | |
"""see :func:`BaseInstanceMasks.rescale`""" | |
new_w, new_h = mmcv.rescale_size((self.width, self.height), scale) | |
if len(self.masks) == 0: | |
rescaled_masks = PolygonMasks([], new_h, new_w) | |
else: | |
rescaled_masks = self.resize((new_h, new_w)) | |
return rescaled_masks | |
def resize(self, out_shape, interpolation=None): | |
"""see :func:`BaseInstanceMasks.resize`""" | |
if len(self.masks) == 0: | |
resized_masks = PolygonMasks([], *out_shape) | |
else: | |
h_scale = out_shape[0] / self.height | |
w_scale = out_shape[1] / self.width | |
resized_masks = [] | |
for poly_per_obj in self.masks: | |
resized_poly = [] | |
for p in poly_per_obj: | |
p = p.copy() | |
p[0::2] = p[0::2] * w_scale | |
p[1::2] = p[1::2] * h_scale | |
resized_poly.append(p) | |
resized_masks.append(resized_poly) | |
resized_masks = PolygonMasks(resized_masks, *out_shape) | |
return resized_masks | |
def flip(self, flip_direction='horizontal'): | |
"""see :func:`BaseInstanceMasks.flip`""" | |
assert flip_direction in ('horizontal', 'vertical', 'diagonal') | |
if len(self.masks) == 0: | |
flipped_masks = PolygonMasks([], self.height, self.width) | |
else: | |
flipped_masks = [] | |
for poly_per_obj in self.masks: | |
flipped_poly_per_obj = [] | |
for p in poly_per_obj: | |
p = p.copy() | |
if flip_direction == 'horizontal': | |
p[0::2] = self.width - p[0::2] | |
elif flip_direction == 'vertical': | |
p[1::2] = self.height - p[1::2] | |
else: | |
p[0::2] = self.width - p[0::2] | |
p[1::2] = self.height - p[1::2] | |
flipped_poly_per_obj.append(p) | |
flipped_masks.append(flipped_poly_per_obj) | |
flipped_masks = PolygonMasks(flipped_masks, self.height, | |
self.width) | |
return flipped_masks | |
def crop(self, bbox): | |
"""see :func:`BaseInstanceMasks.crop`""" | |
assert isinstance(bbox, np.ndarray) | |
assert bbox.ndim == 1 | |
# clip the boundary | |
bbox = bbox.copy() | |
bbox[0::2] = np.clip(bbox[0::2], 0, self.width) | |
bbox[1::2] = np.clip(bbox[1::2], 0, self.height) | |
x1, y1, x2, y2 = bbox | |
w = np.maximum(x2 - x1, 1) | |
h = np.maximum(y2 - y1, 1) | |
if len(self.masks) == 0: | |
cropped_masks = PolygonMasks([], h, w) | |
else: | |
# reference: https://github.com/facebookresearch/fvcore/blob/main/fvcore/transforms/transform.py # noqa | |
crop_box = geometry.box(x1, y1, x2, y2).buffer(0.0) | |
cropped_masks = [] | |
# suppress shapely warnings util it incorporates GEOS>=3.11.2 | |
# reference: https://github.com/shapely/shapely/issues/1345 | |
initial_settings = np.seterr() | |
np.seterr(invalid='ignore') | |
for poly_per_obj in self.masks: | |
cropped_poly_per_obj = [] | |
for p in poly_per_obj: | |
p = p.copy() | |
p = geometry.Polygon(p.reshape(-1, 2)).buffer(0.0) | |
# polygon must be valid to perform intersection. | |
if not p.is_valid: | |
continue | |
cropped = p.intersection(crop_box) | |
if cropped.is_empty: | |
continue | |
if isinstance(cropped, | |
geometry.collection.BaseMultipartGeometry): | |
cropped = cropped.geoms | |
else: | |
cropped = [cropped] | |
# one polygon may be cropped to multiple ones | |
for poly in cropped: | |
# ignore lines or points | |
if not isinstance( | |
poly, geometry.Polygon) or not poly.is_valid: | |
continue | |
coords = np.asarray(poly.exterior.coords) | |
# remove an extra identical vertex at the end | |
coords = coords[:-1] | |
coords[:, 0] -= x1 | |
coords[:, 1] -= y1 | |
cropped_poly_per_obj.append(coords.reshape(-1)) | |
# a dummy polygon to avoid misalignment between masks and boxes | |
if len(cropped_poly_per_obj) == 0: | |
cropped_poly_per_obj = [np.array([0, 0, 0, 0, 0, 0])] | |
cropped_masks.append(cropped_poly_per_obj) | |
np.seterr(**initial_settings) | |
cropped_masks = PolygonMasks(cropped_masks, h, w) | |
return cropped_masks | |
def pad(self, out_shape, pad_val=0): | |
"""padding has no effect on polygons`""" | |
return PolygonMasks(self.masks, *out_shape) | |
def expand(self, *args, **kwargs): | |
"""TODO: Add expand for polygon""" | |
raise NotImplementedError | |
def crop_and_resize(self, | |
bboxes, | |
out_shape, | |
inds, | |
device='cpu', | |
interpolation='bilinear', | |
binarize=True): | |
"""see :func:`BaseInstanceMasks.crop_and_resize`""" | |
out_h, out_w = out_shape | |
if len(self.masks) == 0: | |
return PolygonMasks([], out_h, out_w) | |
if not binarize: | |
raise ValueError('Polygons are always binary, ' | |
'setting binarize=False is unsupported') | |
resized_masks = [] | |
for i in range(len(bboxes)): | |
mask = self.masks[inds[i]] | |
bbox = bboxes[i, :] | |
x1, y1, x2, y2 = bbox | |
w = np.maximum(x2 - x1, 1) | |
h = np.maximum(y2 - y1, 1) | |
h_scale = out_h / max(h, 0.1) # avoid too large scale | |
w_scale = out_w / max(w, 0.1) | |
resized_mask = [] | |
for p in mask: | |
p = p.copy() | |
# crop | |
# pycocotools will clip the boundary | |
p[0::2] = p[0::2] - bbox[0] | |
p[1::2] = p[1::2] - bbox[1] | |
# resize | |
p[0::2] = p[0::2] * w_scale | |
p[1::2] = p[1::2] * h_scale | |
resized_mask.append(p) | |
resized_masks.append(resized_mask) | |
return PolygonMasks(resized_masks, *out_shape) | |
def translate(self, | |
out_shape, | |
offset, | |
direction='horizontal', | |
border_value=None, | |
interpolation=None): | |
"""Translate the PolygonMasks. | |
Example: | |
>>> self = PolygonMasks.random(dtype=np.int64) | |
>>> out_shape = (self.height, self.width) | |
>>> new = self.translate(out_shape, 4., direction='horizontal') | |
>>> assert np.all(new.masks[0][0][1::2] == self.masks[0][0][1::2]) | |
>>> assert np.all(new.masks[0][0][0::2] == self.masks[0][0][0::2] + 4) # noqa: E501 | |
""" | |
assert border_value is None or border_value == 0, \ | |
'Here border_value is not '\ | |
f'used, and defaultly should be None or 0. got {border_value}.' | |
if len(self.masks) == 0: | |
translated_masks = PolygonMasks([], *out_shape) | |
else: | |
translated_masks = [] | |
for poly_per_obj in self.masks: | |
translated_poly_per_obj = [] | |
for p in poly_per_obj: | |
p = p.copy() | |
if direction == 'horizontal': | |
p[0::2] = np.clip(p[0::2] + offset, 0, out_shape[1]) | |
elif direction == 'vertical': | |
p[1::2] = np.clip(p[1::2] + offset, 0, out_shape[0]) | |
translated_poly_per_obj.append(p) | |
translated_masks.append(translated_poly_per_obj) | |
translated_masks = PolygonMasks(translated_masks, *out_shape) | |
return translated_masks | |
def shear(self, | |
out_shape, | |
magnitude, | |
direction='horizontal', | |
border_value=0, | |
interpolation='bilinear'): | |
"""See :func:`BaseInstanceMasks.shear`.""" | |
if len(self.masks) == 0: | |
sheared_masks = PolygonMasks([], *out_shape) | |
else: | |
sheared_masks = [] | |
if direction == 'horizontal': | |
shear_matrix = np.stack([[1, magnitude], | |
[0, 1]]).astype(np.float32) | |
elif direction == 'vertical': | |
shear_matrix = np.stack([[1, 0], [magnitude, | |
1]]).astype(np.float32) | |
for poly_per_obj in self.masks: | |
sheared_poly = [] | |
for p in poly_per_obj: | |
p = np.stack([p[0::2], p[1::2]], axis=0) # [2, n] | |
new_coords = np.matmul(shear_matrix, p) # [2, n] | |
new_coords[0, :] = np.clip(new_coords[0, :], 0, | |
out_shape[1]) | |
new_coords[1, :] = np.clip(new_coords[1, :], 0, | |
out_shape[0]) | |
sheared_poly.append( | |
new_coords.transpose((1, 0)).reshape(-1)) | |
sheared_masks.append(sheared_poly) | |
sheared_masks = PolygonMasks(sheared_masks, *out_shape) | |
return sheared_masks | |
def rotate(self, | |
out_shape, | |
angle, | |
center=None, | |
scale=1.0, | |
border_value=0, | |
interpolation='bilinear'): | |
"""See :func:`BaseInstanceMasks.rotate`.""" | |
if len(self.masks) == 0: | |
rotated_masks = PolygonMasks([], *out_shape) | |
else: | |
rotated_masks = [] | |
rotate_matrix = cv2.getRotationMatrix2D(center, -angle, scale) | |
for poly_per_obj in self.masks: | |
rotated_poly = [] | |
for p in poly_per_obj: | |
p = p.copy() | |
coords = np.stack([p[0::2], p[1::2]], axis=1) # [n, 2] | |
# pad 1 to convert from format [x, y] to homogeneous | |
# coordinates format [x, y, 1] | |
coords = np.concatenate( | |
(coords, np.ones((coords.shape[0], 1), coords.dtype)), | |
axis=1) # [n, 3] | |
rotated_coords = np.matmul( | |
rotate_matrix[None, :, :], | |
coords[:, :, None])[..., 0] # [n, 2, 1] -> [n, 2] | |
rotated_coords[:, 0] = np.clip(rotated_coords[:, 0], 0, | |
out_shape[1]) | |
rotated_coords[:, 1] = np.clip(rotated_coords[:, 1], 0, | |
out_shape[0]) | |
rotated_poly.append(rotated_coords.reshape(-1)) | |
rotated_masks.append(rotated_poly) | |
rotated_masks = PolygonMasks(rotated_masks, *out_shape) | |
return rotated_masks | |
def to_bitmap(self): | |
"""convert polygon masks to bitmap masks.""" | |
bitmap_masks = self.to_ndarray() | |
return BitmapMasks(bitmap_masks, self.height, self.width) | |
def areas(self): | |
"""Compute areas of masks. | |
This func is modified from `detectron2 | |
<https://github.com/facebookresearch/detectron2/blob/ffff8acc35ea88ad1cb1806ab0f00b4c1c5dbfd9/detectron2/structures/masks.py#L387>`_. | |
The function only works with Polygons using the shoelace formula. | |
Return: | |
ndarray: areas of each instance | |
""" # noqa: W501 | |
area = [] | |
for polygons_per_obj in self.masks: | |
area_per_obj = 0 | |
for p in polygons_per_obj: | |
area_per_obj += self._polygon_area(p[0::2], p[1::2]) | |
area.append(area_per_obj) | |
return np.asarray(area) | |
def _polygon_area(self, x, y): | |
"""Compute the area of a component of a polygon. | |
Using the shoelace formula: | |
https://stackoverflow.com/questions/24467972/calculate-area-of-polygon-given-x-y-coordinates | |
Args: | |
x (ndarray): x coordinates of the component | |
y (ndarray): y coordinates of the component | |
Return: | |
float: the are of the component | |
""" # noqa: 501 | |
return 0.5 * np.abs( | |
np.dot(x, np.roll(y, 1)) - np.dot(y, np.roll(x, 1))) | |
def to_ndarray(self): | |
"""Convert masks to the format of ndarray.""" | |
if len(self.masks) == 0: | |
return np.empty((0, self.height, self.width), dtype=np.uint8) | |
bitmap_masks = [] | |
for poly_per_obj in self.masks: | |
bitmap_masks.append( | |
polygon_to_bitmap(poly_per_obj, self.height, self.width)) | |
return np.stack(bitmap_masks) | |
def to_tensor(self, dtype, device): | |
"""See :func:`BaseInstanceMasks.to_tensor`.""" | |
if len(self.masks) == 0: | |
return torch.empty((0, self.height, self.width), | |
dtype=dtype, | |
device=device) | |
ndarray_masks = self.to_ndarray() | |
return torch.tensor(ndarray_masks, dtype=dtype, device=device) | |
def random(cls, | |
num_masks=3, | |
height=32, | |
width=32, | |
n_verts=5, | |
dtype=np.float32, | |
rng=None): | |
"""Generate random polygon masks for demo / testing purposes. | |
Adapted from [1]_ | |
References: | |
.. [1] https://gitlab.kitware.com/computer-vision/kwimage/-/blob/928cae35ca8/kwimage/structs/polygon.py#L379 # noqa: E501 | |
Example: | |
>>> from mmdet.data_elements.mask.structures import PolygonMasks | |
>>> self = PolygonMasks.random() | |
>>> print('self = {}'.format(self)) | |
""" | |
from mmdet.utils.util_random import ensure_rng | |
rng = ensure_rng(rng) | |
def _gen_polygon(n, irregularity, spikeyness): | |
"""Creates the polygon by sampling points on a circle around the | |
centre. Random noise is added by varying the angular spacing | |
between sequential points, and by varying the radial distance of | |
each point from the centre. | |
Based on original code by Mike Ounsworth | |
Args: | |
n (int): number of vertices | |
irregularity (float): [0,1] indicating how much variance there | |
is in the angular spacing of vertices. [0,1] will map to | |
[0, 2pi/numberOfVerts] | |
spikeyness (float): [0,1] indicating how much variance there is | |
in each vertex from the circle of radius aveRadius. [0,1] | |
will map to [0, aveRadius] | |
Returns: | |
a list of vertices, in CCW order. | |
""" | |
from scipy.stats import truncnorm | |
# Generate around the unit circle | |
cx, cy = (0.0, 0.0) | |
radius = 1 | |
tau = np.pi * 2 | |
irregularity = np.clip(irregularity, 0, 1) * 2 * np.pi / n | |
spikeyness = np.clip(spikeyness, 1e-9, 1) | |
# generate n angle steps | |
lower = (tau / n) - irregularity | |
upper = (tau / n) + irregularity | |
angle_steps = rng.uniform(lower, upper, n) | |
# normalize the steps so that point 0 and point n+1 are the same | |
k = angle_steps.sum() / (2 * np.pi) | |
angles = (angle_steps / k).cumsum() + rng.uniform(0, tau) | |
# Convert high and low values to be wrt the standard normal range | |
# https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.truncnorm.html | |
low = 0 | |
high = 2 * radius | |
mean = radius | |
std = spikeyness | |
a = (low - mean) / std | |
b = (high - mean) / std | |
tnorm = truncnorm(a=a, b=b, loc=mean, scale=std) | |
# now generate the points | |
radii = tnorm.rvs(n, random_state=rng) | |
x_pts = cx + radii * np.cos(angles) | |
y_pts = cy + radii * np.sin(angles) | |
points = np.hstack([x_pts[:, None], y_pts[:, None]]) | |
# Scale to 0-1 space | |
points = points - points.min(axis=0) | |
points = points / points.max(axis=0) | |
# Randomly place within 0-1 space | |
points = points * (rng.rand() * .8 + .2) | |
min_pt = points.min(axis=0) | |
max_pt = points.max(axis=0) | |
high = (1 - max_pt) | |
low = (0 - min_pt) | |
offset = (rng.rand(2) * (high - low)) + low | |
points = points + offset | |
return points | |
def _order_vertices(verts): | |
""" | |
References: | |
https://stackoverflow.com/questions/1709283/how-can-i-sort-a-coordinate-list-for-a-rectangle-counterclockwise | |
""" | |
mlat = verts.T[0].sum() / len(verts) | |
mlng = verts.T[1].sum() / len(verts) | |
tau = np.pi * 2 | |
angle = (np.arctan2(mlat - verts.T[0], verts.T[1] - mlng) + | |
tau) % tau | |
sortx = angle.argsort() | |
verts = verts.take(sortx, axis=0) | |
return verts | |
# Generate a random exterior for each requested mask | |
masks = [] | |
for _ in range(num_masks): | |
exterior = _order_vertices(_gen_polygon(n_verts, 0.9, 0.9)) | |
exterior = (exterior * [(width, height)]).astype(dtype) | |
masks.append([exterior.ravel()]) | |
self = cls(masks, height, width) | |
return self | |
def cat(cls: Type[T], masks: Sequence[T]) -> T: | |
"""Concatenate a sequence of masks into one single mask instance. | |
Args: | |
masks (Sequence[PolygonMasks]): A sequence of mask instances. | |
Returns: | |
PolygonMasks: Concatenated mask instance. | |
""" | |
assert isinstance(masks, Sequence) | |
if len(masks) == 0: | |
raise ValueError('masks should not be an empty list.') | |
assert all(isinstance(m, cls) for m in masks) | |
mask_list = list(itertools.chain(*[m.masks for m in masks])) | |
return cls(mask_list, masks[0].height, masks[0].width) | |
def polygon_to_bitmap(polygons, height, width): | |
"""Convert masks from the form of polygons to bitmaps. | |
Args: | |
polygons (list[ndarray]): masks in polygon representation | |
height (int): mask height | |
width (int): mask width | |
Return: | |
ndarray: the converted masks in bitmap representation | |
""" | |
rles = maskUtils.frPyObjects(polygons, height, width) | |
rle = maskUtils.merge(rles) | |
bitmap_mask = maskUtils.decode(rle).astype(bool) | |
return bitmap_mask | |
def bitmap_to_polygon(bitmap): | |
"""Convert masks from the form of bitmaps to polygons. | |
Args: | |
bitmap (ndarray): masks in bitmap representation. | |
Return: | |
list[ndarray]: the converted mask in polygon representation. | |
bool: whether the mask has holes. | |
""" | |
bitmap = np.ascontiguousarray(bitmap).astype(np.uint8) | |
# cv2.RETR_CCOMP: retrieves all of the contours and organizes them | |
# into a two-level hierarchy. At the top level, there are external | |
# boundaries of the components. At the second level, there are | |
# boundaries of the holes. If there is another contour inside a hole | |
# of a connected component, it is still put at the top level. | |
# cv2.CHAIN_APPROX_NONE: stores absolutely all the contour points. | |
outs = cv2.findContours(bitmap, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_NONE) | |
contours = outs[-2] | |
hierarchy = outs[-1] | |
if hierarchy is None: | |
return [], False | |
# hierarchy[i]: 4 elements, for the indexes of next, previous, | |
# parent, or nested contours. If there is no corresponding contour, | |
# it will be -1. | |
with_hole = (hierarchy.reshape(-1, 4)[:, 3] >= 0).any() | |
contours = [c.reshape(-1, 2) for c in contours] | |
return contours, with_hole | |