KyanChen's picture
Upload 787 files
3e06e1c
raw
history blame
30.9 kB
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Tuple, Union
import numpy as np
import torch
import torch.nn as nn
from mmcv.cnn import ConvModule, Scale
from mmcv.ops import DeformConv2d
from torch import Tensor
from mmdet.registry import MODELS, TASK_UTILS
from mmdet.structures.bbox import bbox_overlaps
from mmdet.utils import (ConfigType, InstanceList, MultiConfig,
OptInstanceList, RangeType, reduce_mean)
from ..task_modules.prior_generators import MlvlPointGenerator
from ..task_modules.samplers import PseudoSampler
from ..utils import multi_apply
from .atss_head import ATSSHead
from .fcos_head import FCOSHead
INF = 1e8
@MODELS.register_module()
class VFNetHead(ATSSHead, FCOSHead):
"""Head of `VarifocalNet (VFNet): An IoU-aware Dense Object
Detector.<https://arxiv.org/abs/2008.13367>`_.
The VFNet predicts IoU-aware classification scores which mix the
object presence confidence and object localization accuracy as the
detection score. It is built on the FCOS architecture and uses ATSS
for defining positive/negative training examples. The VFNet is trained
with Varifocal Loss and empolys star-shaped deformable convolution to
extract features for a bbox.
Args:
num_classes (int): Number of categories excluding the background
category.
in_channels (int): Number of channels in the input feature map.
regress_ranges (Sequence[Tuple[int, int]]): Regress range of multiple
level points.
center_sampling (bool): If true, use center sampling. Defaults to False.
center_sample_radius (float): Radius of center sampling. Defaults to 1.5.
sync_num_pos (bool): If true, synchronize the number of positive
examples across GPUs. Defaults to True
gradient_mul (float): The multiplier to gradients from bbox refinement
and recognition. Defaults to 0.1.
bbox_norm_type (str): The bbox normalization type, 'reg_denom' or
'stride'. Defaults to reg_denom
loss_cls_fl (:obj:`ConfigDict` or dict): Config of focal loss.
use_vfl (bool): If true, use varifocal loss for training.
Defaults to True.
loss_cls (:obj:`ConfigDict` or dict): Config of varifocal loss.
loss_bbox (:obj:`ConfigDict` or dict): Config of localization loss,
GIoU Loss.
loss_bbox (:obj:`ConfigDict` or dict): Config of localization
refinement loss, GIoU Loss.
norm_cfg (:obj:`ConfigDict` or dict): dictionary to construct and
config norm layer. Defaults to norm_cfg=dict(type='GN',
num_groups=32, requires_grad=True).
use_atss (bool): If true, use ATSS to define positive/negative
examples. Defaults to True.
anchor_generator (:obj:`ConfigDict` or dict): Config of anchor
generator for ATSS.
init_cfg (:obj:`ConfigDict` or dict or list[dict] or
list[:obj:`ConfigDict`]): Initialization config dict.
Example:
>>> self = VFNetHead(11, 7)
>>> feats = [torch.rand(1, 7, s, s) for s in [4, 8, 16, 32, 64]]
>>> cls_score, bbox_pred, bbox_pred_refine= self.forward(feats)
>>> assert len(cls_score) == len(self.scales)
""" # noqa: E501
def __init__(self,
num_classes: int,
in_channels: int,
regress_ranges: RangeType = ((-1, 64), (64, 128), (128, 256),
(256, 512), (512, INF)),
center_sampling: bool = False,
center_sample_radius: float = 1.5,
sync_num_pos: bool = True,
gradient_mul: float = 0.1,
bbox_norm_type: str = 'reg_denom',
loss_cls_fl: ConfigType = dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
use_vfl: bool = True,
loss_cls: ConfigType = dict(
type='VarifocalLoss',
use_sigmoid=True,
alpha=0.75,
gamma=2.0,
iou_weighted=True,
loss_weight=1.0),
loss_bbox: ConfigType = dict(
type='GIoULoss', loss_weight=1.5),
loss_bbox_refine: ConfigType = dict(
type='GIoULoss', loss_weight=2.0),
norm_cfg: ConfigType = dict(
type='GN', num_groups=32, requires_grad=True),
use_atss: bool = True,
reg_decoded_bbox: bool = True,
anchor_generator: ConfigType = dict(
type='AnchorGenerator',
ratios=[1.0],
octave_base_scale=8,
scales_per_octave=1,
center_offset=0.0,
strides=[8, 16, 32, 64, 128]),
init_cfg: MultiConfig = dict(
type='Normal',
layer='Conv2d',
std=0.01,
override=dict(
type='Normal',
name='vfnet_cls',
std=0.01,
bias_prob=0.01)),
**kwargs) -> None:
# dcn base offsets, adapted from reppoints_head.py
self.num_dconv_points = 9
self.dcn_kernel = int(np.sqrt(self.num_dconv_points))
self.dcn_pad = int((self.dcn_kernel - 1) / 2)
dcn_base = np.arange(-self.dcn_pad,
self.dcn_pad + 1).astype(np.float64)
dcn_base_y = np.repeat(dcn_base, self.dcn_kernel)
dcn_base_x = np.tile(dcn_base, self.dcn_kernel)
dcn_base_offset = np.stack([dcn_base_y, dcn_base_x], axis=1).reshape(
(-1))
self.dcn_base_offset = torch.tensor(dcn_base_offset).view(1, -1, 1, 1)
super(FCOSHead, self).__init__(
num_classes=num_classes,
in_channels=in_channels,
norm_cfg=norm_cfg,
init_cfg=init_cfg,
**kwargs)
self.regress_ranges = regress_ranges
self.reg_denoms = [
regress_range[-1] for regress_range in regress_ranges
]
self.reg_denoms[-1] = self.reg_denoms[-2] * 2
self.center_sampling = center_sampling
self.center_sample_radius = center_sample_radius
self.sync_num_pos = sync_num_pos
self.bbox_norm_type = bbox_norm_type
self.gradient_mul = gradient_mul
self.use_vfl = use_vfl
if self.use_vfl:
self.loss_cls = MODELS.build(loss_cls)
else:
self.loss_cls = MODELS.build(loss_cls_fl)
self.loss_bbox = MODELS.build(loss_bbox)
self.loss_bbox_refine = MODELS.build(loss_bbox_refine)
# for getting ATSS targets
self.use_atss = use_atss
self.reg_decoded_bbox = reg_decoded_bbox
self.use_sigmoid_cls = loss_cls.get('use_sigmoid', False)
self.anchor_center_offset = anchor_generator['center_offset']
self.num_base_priors = self.prior_generator.num_base_priors[0]
if self.train_cfg:
self.assigner = TASK_UTILS.build(self.train_cfg['assigner'])
if self.train_cfg.get('sampler', None) is not None:
self.sampler = TASK_UTILS.build(
self.train_cfg['sampler'], default_args=dict(context=self))
else:
self.sampler = PseudoSampler()
# only be used in `get_atss_targets` when `use_atss` is True
self.atss_prior_generator = TASK_UTILS.build(anchor_generator)
self.fcos_prior_generator = MlvlPointGenerator(
anchor_generator['strides'],
self.anchor_center_offset if self.use_atss else 0.5)
# In order to reuse the `get_bboxes` in `BaseDenseHead.
# Only be used in testing phase.
self.prior_generator = self.fcos_prior_generator
def _init_layers(self) -> None:
"""Initialize layers of the head."""
super(FCOSHead, self)._init_cls_convs()
super(FCOSHead, self)._init_reg_convs()
self.relu = nn.ReLU()
self.vfnet_reg_conv = ConvModule(
self.feat_channels,
self.feat_channels,
3,
stride=1,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
bias=self.conv_bias)
self.vfnet_reg = nn.Conv2d(self.feat_channels, 4, 3, padding=1)
self.scales = nn.ModuleList([Scale(1.0) for _ in self.strides])
self.vfnet_reg_refine_dconv = DeformConv2d(
self.feat_channels,
self.feat_channels,
self.dcn_kernel,
1,
padding=self.dcn_pad)
self.vfnet_reg_refine = nn.Conv2d(self.feat_channels, 4, 3, padding=1)
self.scales_refine = nn.ModuleList([Scale(1.0) for _ in self.strides])
self.vfnet_cls_dconv = DeformConv2d(
self.feat_channels,
self.feat_channels,
self.dcn_kernel,
1,
padding=self.dcn_pad)
self.vfnet_cls = nn.Conv2d(
self.feat_channels, self.cls_out_channels, 3, padding=1)
def forward(self, x: Tuple[Tensor]) -> Tuple[List[Tensor]]:
"""Forward features from the upstream network.
Args:
x (tuple[Tensor]): Features from the upstream network, each is
a 4D-tensor.
Returns:
tuple:
- cls_scores (list[Tensor]): Box iou-aware scores for each scale
level, each is a 4D-tensor, the channel number is
num_points * num_classes.
- bbox_preds (list[Tensor]): Box offsets for each
scale level, each is a 4D-tensor, the channel number is
num_points * 4.
- bbox_preds_refine (list[Tensor]): Refined Box offsets for
each scale level, each is a 4D-tensor, the channel
number is num_points * 4.
"""
return multi_apply(self.forward_single, x, self.scales,
self.scales_refine, self.strides, self.reg_denoms)
def forward_single(self, x: Tensor, scale: Scale, scale_refine: Scale,
stride: int, reg_denom: int) -> tuple:
"""Forward features of a single scale level.
Args:
x (Tensor): FPN feature maps of the specified stride.
scale (:obj: `mmcv.cnn.Scale`): Learnable scale module to resize
the bbox prediction.
scale_refine (:obj: `mmcv.cnn.Scale`): Learnable scale module to
resize the refined bbox prediction.
stride (int): The corresponding stride for feature maps,
used to normalize the bbox prediction when
bbox_norm_type = 'stride'.
reg_denom (int): The corresponding regression range for feature
maps, only used to normalize the bbox prediction when
bbox_norm_type = 'reg_denom'.
Returns:
tuple: iou-aware cls scores for each box, bbox predictions and
refined bbox predictions of input feature maps.
"""
cls_feat = x
reg_feat = x
for cls_layer in self.cls_convs:
cls_feat = cls_layer(cls_feat)
for reg_layer in self.reg_convs:
reg_feat = reg_layer(reg_feat)
# predict the bbox_pred of different level
reg_feat_init = self.vfnet_reg_conv(reg_feat)
if self.bbox_norm_type == 'reg_denom':
bbox_pred = scale(
self.vfnet_reg(reg_feat_init)).float().exp() * reg_denom
elif self.bbox_norm_type == 'stride':
bbox_pred = scale(
self.vfnet_reg(reg_feat_init)).float().exp() * stride
else:
raise NotImplementedError
# compute star deformable convolution offsets
# converting dcn_offset to reg_feat.dtype thus VFNet can be
# trained with FP16
dcn_offset = self.star_dcn_offset(bbox_pred, self.gradient_mul,
stride).to(reg_feat.dtype)
# refine the bbox_pred
reg_feat = self.relu(self.vfnet_reg_refine_dconv(reg_feat, dcn_offset))
bbox_pred_refine = scale_refine(
self.vfnet_reg_refine(reg_feat)).float().exp()
bbox_pred_refine = bbox_pred_refine * bbox_pred.detach()
# predict the iou-aware cls score
cls_feat = self.relu(self.vfnet_cls_dconv(cls_feat, dcn_offset))
cls_score = self.vfnet_cls(cls_feat)
if self.training:
return cls_score, bbox_pred, bbox_pred_refine
else:
return cls_score, bbox_pred_refine
def star_dcn_offset(self, bbox_pred: Tensor, gradient_mul: float,
stride: int) -> Tensor:
"""Compute the star deformable conv offsets.
Args:
bbox_pred (Tensor): Predicted bbox distance offsets (l, r, t, b).
gradient_mul (float): Gradient multiplier.
stride (int): The corresponding stride for feature maps,
used to project the bbox onto the feature map.
Returns:
Tensor: The offsets for deformable convolution.
"""
dcn_base_offset = self.dcn_base_offset.type_as(bbox_pred)
bbox_pred_grad_mul = (1 - gradient_mul) * bbox_pred.detach() + \
gradient_mul * bbox_pred
# map to the feature map scale
bbox_pred_grad_mul = bbox_pred_grad_mul / stride
N, C, H, W = bbox_pred.size()
x1 = bbox_pred_grad_mul[:, 0, :, :]
y1 = bbox_pred_grad_mul[:, 1, :, :]
x2 = bbox_pred_grad_mul[:, 2, :, :]
y2 = bbox_pred_grad_mul[:, 3, :, :]
bbox_pred_grad_mul_offset = bbox_pred.new_zeros(
N, 2 * self.num_dconv_points, H, W)
bbox_pred_grad_mul_offset[:, 0, :, :] = -1.0 * y1 # -y1
bbox_pred_grad_mul_offset[:, 1, :, :] = -1.0 * x1 # -x1
bbox_pred_grad_mul_offset[:, 2, :, :] = -1.0 * y1 # -y1
bbox_pred_grad_mul_offset[:, 4, :, :] = -1.0 * y1 # -y1
bbox_pred_grad_mul_offset[:, 5, :, :] = x2 # x2
bbox_pred_grad_mul_offset[:, 7, :, :] = -1.0 * x1 # -x1
bbox_pred_grad_mul_offset[:, 11, :, :] = x2 # x2
bbox_pred_grad_mul_offset[:, 12, :, :] = y2 # y2
bbox_pred_grad_mul_offset[:, 13, :, :] = -1.0 * x1 # -x1
bbox_pred_grad_mul_offset[:, 14, :, :] = y2 # y2
bbox_pred_grad_mul_offset[:, 16, :, :] = y2 # y2
bbox_pred_grad_mul_offset[:, 17, :, :] = x2 # x2
dcn_offset = bbox_pred_grad_mul_offset - dcn_base_offset
return dcn_offset
def loss_by_feat(
self,
cls_scores: List[Tensor],
bbox_preds: List[Tensor],
bbox_preds_refine: List[Tensor],
batch_gt_instances: InstanceList,
batch_img_metas: List[dict],
batch_gt_instances_ignore: OptInstanceList = None) -> dict:
"""Compute loss of the head.
Args:
cls_scores (list[Tensor]): Box iou-aware scores for each scale
level, each is a 4D-tensor, the channel number is
num_points * num_classes.
bbox_preds (list[Tensor]): Box offsets for each
scale level, each is a 4D-tensor, the channel number is
num_points * 4.
bbox_preds_refine (list[Tensor]): Refined Box offsets for
each scale level, each is a 4D-tensor, the channel
number is num_points * 4.
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes`` and ``labels``
attributes.
batch_img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional):
Batch of gt_instances_ignore. It includes ``bboxes`` attribute
data that is ignored during training and testing.
Defaults to None.
Returns:
dict[str, Tensor]: A dictionary of loss components.
"""
assert len(cls_scores) == len(bbox_preds) == len(bbox_preds_refine)
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
all_level_points = self.fcos_prior_generator.grid_priors(
featmap_sizes, bbox_preds[0].dtype, bbox_preds[0].device)
labels, label_weights, bbox_targets, bbox_weights = self.get_targets(
cls_scores,
all_level_points,
batch_gt_instances,
batch_img_metas,
batch_gt_instances_ignore=batch_gt_instances_ignore)
num_imgs = cls_scores[0].size(0)
# flatten cls_scores, bbox_preds and bbox_preds_refine
flatten_cls_scores = [
cls_score.permute(0, 2, 3,
1).reshape(-1,
self.cls_out_channels).contiguous()
for cls_score in cls_scores
]
flatten_bbox_preds = [
bbox_pred.permute(0, 2, 3, 1).reshape(-1, 4).contiguous()
for bbox_pred in bbox_preds
]
flatten_bbox_preds_refine = [
bbox_pred_refine.permute(0, 2, 3, 1).reshape(-1, 4).contiguous()
for bbox_pred_refine in bbox_preds_refine
]
flatten_cls_scores = torch.cat(flatten_cls_scores)
flatten_bbox_preds = torch.cat(flatten_bbox_preds)
flatten_bbox_preds_refine = torch.cat(flatten_bbox_preds_refine)
flatten_labels = torch.cat(labels)
flatten_bbox_targets = torch.cat(bbox_targets)
# repeat points to align with bbox_preds
flatten_points = torch.cat(
[points.repeat(num_imgs, 1) for points in all_level_points])
# FG cat_id: [0, num_classes - 1], BG cat_id: num_classes
bg_class_ind = self.num_classes
pos_inds = torch.where(
((flatten_labels >= 0) & (flatten_labels < bg_class_ind)) > 0)[0]
num_pos = len(pos_inds)
pos_bbox_preds = flatten_bbox_preds[pos_inds]
pos_bbox_preds_refine = flatten_bbox_preds_refine[pos_inds]
pos_labels = flatten_labels[pos_inds]
# sync num_pos across all gpus
if self.sync_num_pos:
num_pos_avg_per_gpu = reduce_mean(
pos_inds.new_tensor(num_pos).float()).item()
num_pos_avg_per_gpu = max(num_pos_avg_per_gpu, 1.0)
else:
num_pos_avg_per_gpu = num_pos
pos_bbox_targets = flatten_bbox_targets[pos_inds]
pos_points = flatten_points[pos_inds]
pos_decoded_bbox_preds = self.bbox_coder.decode(
pos_points, pos_bbox_preds)
pos_decoded_target_preds = self.bbox_coder.decode(
pos_points, pos_bbox_targets)
iou_targets_ini = bbox_overlaps(
pos_decoded_bbox_preds,
pos_decoded_target_preds.detach(),
is_aligned=True).clamp(min=1e-6)
bbox_weights_ini = iou_targets_ini.clone().detach()
bbox_avg_factor_ini = reduce_mean(
bbox_weights_ini.sum()).clamp_(min=1).item()
pos_decoded_bbox_preds_refine = \
self.bbox_coder.decode(pos_points, pos_bbox_preds_refine)
iou_targets_rf = bbox_overlaps(
pos_decoded_bbox_preds_refine,
pos_decoded_target_preds.detach(),
is_aligned=True).clamp(min=1e-6)
bbox_weights_rf = iou_targets_rf.clone().detach()
bbox_avg_factor_rf = reduce_mean(
bbox_weights_rf.sum()).clamp_(min=1).item()
if num_pos > 0:
loss_bbox = self.loss_bbox(
pos_decoded_bbox_preds,
pos_decoded_target_preds.detach(),
weight=bbox_weights_ini,
avg_factor=bbox_avg_factor_ini)
loss_bbox_refine = self.loss_bbox_refine(
pos_decoded_bbox_preds_refine,
pos_decoded_target_preds.detach(),
weight=bbox_weights_rf,
avg_factor=bbox_avg_factor_rf)
# build IoU-aware cls_score targets
if self.use_vfl:
pos_ious = iou_targets_rf.clone().detach()
cls_iou_targets = torch.zeros_like(flatten_cls_scores)
cls_iou_targets[pos_inds, pos_labels] = pos_ious
else:
loss_bbox = pos_bbox_preds.sum() * 0
loss_bbox_refine = pos_bbox_preds_refine.sum() * 0
if self.use_vfl:
cls_iou_targets = torch.zeros_like(flatten_cls_scores)
if self.use_vfl:
loss_cls = self.loss_cls(
flatten_cls_scores,
cls_iou_targets,
avg_factor=num_pos_avg_per_gpu)
else:
loss_cls = self.loss_cls(
flatten_cls_scores,
flatten_labels,
weight=label_weights,
avg_factor=num_pos_avg_per_gpu)
return dict(
loss_cls=loss_cls,
loss_bbox=loss_bbox,
loss_bbox_rf=loss_bbox_refine)
def get_targets(
self,
cls_scores: List[Tensor],
mlvl_points: List[Tensor],
batch_gt_instances: InstanceList,
batch_img_metas: List[dict],
batch_gt_instances_ignore: OptInstanceList = None) -> tuple:
"""A wrapper for computing ATSS and FCOS targets for points in multiple
images.
Args:
cls_scores (list[Tensor]): Box iou-aware scores for each scale
level with shape (N, num_points * num_classes, H, W).
mlvl_points (list[Tensor]): Points of each fpn level, each has
shape (num_points, 2).
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes`` and ``labels``
attributes.
batch_img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional):
Batch of gt_instances_ignore. It includes ``bboxes`` attribute
data that is ignored during training and testing.
Defaults to None.
Returns:
tuple:
- labels_list (list[Tensor]): Labels of each level.
- label_weights (Tensor/None): Label weights of all levels.
- bbox_targets_list (list[Tensor]): Regression targets of each
level, (l, t, r, b).
- bbox_weights (Tensor/None): Bbox weights of all levels.
"""
if self.use_atss:
return self.get_atss_targets(cls_scores, mlvl_points,
batch_gt_instances, batch_img_metas,
batch_gt_instances_ignore)
else:
self.norm_on_bbox = False
return self.get_fcos_targets(mlvl_points, batch_gt_instances)
def _get_targets_single(self, *args, **kwargs):
"""Avoid ambiguity in multiple inheritance."""
if self.use_atss:
return ATSSHead._get_targets_single(self, *args, **kwargs)
else:
return FCOSHead._get_targets_single(self, *args, **kwargs)
def get_fcos_targets(self, points: List[Tensor],
batch_gt_instances: InstanceList) -> tuple:
"""Compute FCOS regression and classification targets for points in
multiple images.
Args:
points (list[Tensor]): Points of each fpn level, each has shape
(num_points, 2).
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes`` and ``labels``
attributes.
Returns:
tuple:
- labels (list[Tensor]): Labels of each level.
- label_weights: None, to be compatible with ATSS targets.
- bbox_targets (list[Tensor]): BBox targets of each level.
- bbox_weights: None, to be compatible with ATSS targets.
"""
labels, bbox_targets = FCOSHead.get_targets(self, points,
batch_gt_instances)
label_weights = None
bbox_weights = None
return labels, label_weights, bbox_targets, bbox_weights
def get_anchors(self,
featmap_sizes: List[Tuple],
batch_img_metas: List[dict],
device: str = 'cuda') -> tuple:
"""Get anchors according to feature map sizes.
Args:
featmap_sizes (list[tuple]): Multi-level feature map sizes.
batch_img_metas (list[dict]): Image meta info.
device (str): Device for returned tensors
Returns:
tuple:
- anchor_list (list[Tensor]): Anchors of each image.
- valid_flag_list (list[Tensor]): Valid flags of each image.
"""
num_imgs = len(batch_img_metas)
# since feature map sizes of all images are the same, we only compute
# anchors for one time
multi_level_anchors = self.atss_prior_generator.grid_priors(
featmap_sizes, device=device)
anchor_list = [multi_level_anchors for _ in range(num_imgs)]
# for each image, we compute valid flags of multi level anchors
valid_flag_list = []
for img_id, img_meta in enumerate(batch_img_metas):
multi_level_flags = self.atss_prior_generator.valid_flags(
featmap_sizes, img_meta['pad_shape'], device=device)
valid_flag_list.append(multi_level_flags)
return anchor_list, valid_flag_list
def get_atss_targets(
self,
cls_scores: List[Tensor],
mlvl_points: List[Tensor],
batch_gt_instances: InstanceList,
batch_img_metas: List[dict],
batch_gt_instances_ignore: OptInstanceList = None) -> tuple:
"""A wrapper for computing ATSS targets for points in multiple images.
Args:
cls_scores (list[Tensor]): Box iou-aware scores for each scale
level with shape (N, num_points * num_classes, H, W).
mlvl_points (list[Tensor]): Points of each fpn level, each has
shape (num_points, 2).
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes`` and ``labels``
attributes.
batch_img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional):
Batch of gt_instances_ignore. It includes ``bboxes`` attribute
data that is ignored during training and testing.
Defaults to None.
Returns:
tuple:
- labels_list (list[Tensor]): Labels of each level.
- label_weights (Tensor): Label weights of all levels.
- bbox_targets_list (list[Tensor]): Regression targets of each
level, (l, t, r, b).
- bbox_weights (Tensor): Bbox weights of all levels.
"""
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
assert len(
featmap_sizes
) == self.atss_prior_generator.num_levels == \
self.fcos_prior_generator.num_levels
device = cls_scores[0].device
anchor_list, valid_flag_list = self.get_anchors(
featmap_sizes, batch_img_metas, device=device)
cls_reg_targets = ATSSHead.get_targets(
self,
anchor_list,
valid_flag_list,
batch_gt_instances,
batch_img_metas,
batch_gt_instances_ignore,
unmap_outputs=True)
(anchor_list, labels_list, label_weights_list, bbox_targets_list,
bbox_weights_list, avg_factor) = cls_reg_targets
bbox_targets_list = [
bbox_targets.reshape(-1, 4) for bbox_targets in bbox_targets_list
]
num_imgs = len(batch_img_metas)
# transform bbox_targets (x1, y1, x2, y2) into (l, t, r, b) format
bbox_targets_list = self.transform_bbox_targets(
bbox_targets_list, mlvl_points, num_imgs)
labels_list = [labels.reshape(-1) for labels in labels_list]
label_weights_list = [
label_weights.reshape(-1) for label_weights in label_weights_list
]
bbox_weights_list = [
bbox_weights.reshape(-1) for bbox_weights in bbox_weights_list
]
label_weights = torch.cat(label_weights_list)
bbox_weights = torch.cat(bbox_weights_list)
return labels_list, label_weights, bbox_targets_list, bbox_weights
def transform_bbox_targets(self, decoded_bboxes: List[Tensor],
mlvl_points: List[Tensor],
num_imgs: int) -> List[Tensor]:
"""Transform bbox_targets (x1, y1, x2, y2) into (l, t, r, b) format.
Args:
decoded_bboxes (list[Tensor]): Regression targets of each level,
in the form of (x1, y1, x2, y2).
mlvl_points (list[Tensor]): Points of each fpn level, each has
shape (num_points, 2).
num_imgs (int): the number of images in a batch.
Returns:
bbox_targets (list[Tensor]): Regression targets of each level in
the form of (l, t, r, b).
"""
# TODO: Re-implemented in Class PointCoder
assert len(decoded_bboxes) == len(mlvl_points)
num_levels = len(decoded_bboxes)
mlvl_points = [points.repeat(num_imgs, 1) for points in mlvl_points]
bbox_targets = []
for i in range(num_levels):
bbox_target = self.bbox_coder.encode(mlvl_points[i],
decoded_bboxes[i])
bbox_targets.append(bbox_target)
return bbox_targets
def _load_from_state_dict(self, state_dict: dict, prefix: str,
local_metadata: dict, strict: bool,
missing_keys: Union[List[str], str],
unexpected_keys: Union[List[str], str],
error_msgs: Union[List[str], str]) -> None:
"""Override the method in the parent class to avoid changing para's
name."""
pass