Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import List, Tuple, Union | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from mmcv.cnn import ConvModule, Scale | |
from mmcv.ops import DeformConv2d | |
from torch import Tensor | |
from mmdet.registry import MODELS, TASK_UTILS | |
from mmdet.structures.bbox import bbox_overlaps | |
from mmdet.utils import (ConfigType, InstanceList, MultiConfig, | |
OptInstanceList, RangeType, reduce_mean) | |
from ..task_modules.prior_generators import MlvlPointGenerator | |
from ..task_modules.samplers import PseudoSampler | |
from ..utils import multi_apply | |
from .atss_head import ATSSHead | |
from .fcos_head import FCOSHead | |
INF = 1e8 | |
class VFNetHead(ATSSHead, FCOSHead): | |
"""Head of `VarifocalNet (VFNet): An IoU-aware Dense Object | |
Detector.<https://arxiv.org/abs/2008.13367>`_. | |
The VFNet predicts IoU-aware classification scores which mix the | |
object presence confidence and object localization accuracy as the | |
detection score. It is built on the FCOS architecture and uses ATSS | |
for defining positive/negative training examples. The VFNet is trained | |
with Varifocal Loss and empolys star-shaped deformable convolution to | |
extract features for a bbox. | |
Args: | |
num_classes (int): Number of categories excluding the background | |
category. | |
in_channels (int): Number of channels in the input feature map. | |
regress_ranges (Sequence[Tuple[int, int]]): Regress range of multiple | |
level points. | |
center_sampling (bool): If true, use center sampling. Defaults to False. | |
center_sample_radius (float): Radius of center sampling. Defaults to 1.5. | |
sync_num_pos (bool): If true, synchronize the number of positive | |
examples across GPUs. Defaults to True | |
gradient_mul (float): The multiplier to gradients from bbox refinement | |
and recognition. Defaults to 0.1. | |
bbox_norm_type (str): The bbox normalization type, 'reg_denom' or | |
'stride'. Defaults to reg_denom | |
loss_cls_fl (:obj:`ConfigDict` or dict): Config of focal loss. | |
use_vfl (bool): If true, use varifocal loss for training. | |
Defaults to True. | |
loss_cls (:obj:`ConfigDict` or dict): Config of varifocal loss. | |
loss_bbox (:obj:`ConfigDict` or dict): Config of localization loss, | |
GIoU Loss. | |
loss_bbox (:obj:`ConfigDict` or dict): Config of localization | |
refinement loss, GIoU Loss. | |
norm_cfg (:obj:`ConfigDict` or dict): dictionary to construct and | |
config norm layer. Defaults to norm_cfg=dict(type='GN', | |
num_groups=32, requires_grad=True). | |
use_atss (bool): If true, use ATSS to define positive/negative | |
examples. Defaults to True. | |
anchor_generator (:obj:`ConfigDict` or dict): Config of anchor | |
generator for ATSS. | |
init_cfg (:obj:`ConfigDict` or dict or list[dict] or | |
list[:obj:`ConfigDict`]): Initialization config dict. | |
Example: | |
>>> self = VFNetHead(11, 7) | |
>>> feats = [torch.rand(1, 7, s, s) for s in [4, 8, 16, 32, 64]] | |
>>> cls_score, bbox_pred, bbox_pred_refine= self.forward(feats) | |
>>> assert len(cls_score) == len(self.scales) | |
""" # noqa: E501 | |
def __init__(self, | |
num_classes: int, | |
in_channels: int, | |
regress_ranges: RangeType = ((-1, 64), (64, 128), (128, 256), | |
(256, 512), (512, INF)), | |
center_sampling: bool = False, | |
center_sample_radius: float = 1.5, | |
sync_num_pos: bool = True, | |
gradient_mul: float = 0.1, | |
bbox_norm_type: str = 'reg_denom', | |
loss_cls_fl: ConfigType = dict( | |
type='FocalLoss', | |
use_sigmoid=True, | |
gamma=2.0, | |
alpha=0.25, | |
loss_weight=1.0), | |
use_vfl: bool = True, | |
loss_cls: ConfigType = dict( | |
type='VarifocalLoss', | |
use_sigmoid=True, | |
alpha=0.75, | |
gamma=2.0, | |
iou_weighted=True, | |
loss_weight=1.0), | |
loss_bbox: ConfigType = dict( | |
type='GIoULoss', loss_weight=1.5), | |
loss_bbox_refine: ConfigType = dict( | |
type='GIoULoss', loss_weight=2.0), | |
norm_cfg: ConfigType = dict( | |
type='GN', num_groups=32, requires_grad=True), | |
use_atss: bool = True, | |
reg_decoded_bbox: bool = True, | |
anchor_generator: ConfigType = dict( | |
type='AnchorGenerator', | |
ratios=[1.0], | |
octave_base_scale=8, | |
scales_per_octave=1, | |
center_offset=0.0, | |
strides=[8, 16, 32, 64, 128]), | |
init_cfg: MultiConfig = dict( | |
type='Normal', | |
layer='Conv2d', | |
std=0.01, | |
override=dict( | |
type='Normal', | |
name='vfnet_cls', | |
std=0.01, | |
bias_prob=0.01)), | |
**kwargs) -> None: | |
# dcn base offsets, adapted from reppoints_head.py | |
self.num_dconv_points = 9 | |
self.dcn_kernel = int(np.sqrt(self.num_dconv_points)) | |
self.dcn_pad = int((self.dcn_kernel - 1) / 2) | |
dcn_base = np.arange(-self.dcn_pad, | |
self.dcn_pad + 1).astype(np.float64) | |
dcn_base_y = np.repeat(dcn_base, self.dcn_kernel) | |
dcn_base_x = np.tile(dcn_base, self.dcn_kernel) | |
dcn_base_offset = np.stack([dcn_base_y, dcn_base_x], axis=1).reshape( | |
(-1)) | |
self.dcn_base_offset = torch.tensor(dcn_base_offset).view(1, -1, 1, 1) | |
super(FCOSHead, self).__init__( | |
num_classes=num_classes, | |
in_channels=in_channels, | |
norm_cfg=norm_cfg, | |
init_cfg=init_cfg, | |
**kwargs) | |
self.regress_ranges = regress_ranges | |
self.reg_denoms = [ | |
regress_range[-1] for regress_range in regress_ranges | |
] | |
self.reg_denoms[-1] = self.reg_denoms[-2] * 2 | |
self.center_sampling = center_sampling | |
self.center_sample_radius = center_sample_radius | |
self.sync_num_pos = sync_num_pos | |
self.bbox_norm_type = bbox_norm_type | |
self.gradient_mul = gradient_mul | |
self.use_vfl = use_vfl | |
if self.use_vfl: | |
self.loss_cls = MODELS.build(loss_cls) | |
else: | |
self.loss_cls = MODELS.build(loss_cls_fl) | |
self.loss_bbox = MODELS.build(loss_bbox) | |
self.loss_bbox_refine = MODELS.build(loss_bbox_refine) | |
# for getting ATSS targets | |
self.use_atss = use_atss | |
self.reg_decoded_bbox = reg_decoded_bbox | |
self.use_sigmoid_cls = loss_cls.get('use_sigmoid', False) | |
self.anchor_center_offset = anchor_generator['center_offset'] | |
self.num_base_priors = self.prior_generator.num_base_priors[0] | |
if self.train_cfg: | |
self.assigner = TASK_UTILS.build(self.train_cfg['assigner']) | |
if self.train_cfg.get('sampler', None) is not None: | |
self.sampler = TASK_UTILS.build( | |
self.train_cfg['sampler'], default_args=dict(context=self)) | |
else: | |
self.sampler = PseudoSampler() | |
# only be used in `get_atss_targets` when `use_atss` is True | |
self.atss_prior_generator = TASK_UTILS.build(anchor_generator) | |
self.fcos_prior_generator = MlvlPointGenerator( | |
anchor_generator['strides'], | |
self.anchor_center_offset if self.use_atss else 0.5) | |
# In order to reuse the `get_bboxes` in `BaseDenseHead. | |
# Only be used in testing phase. | |
self.prior_generator = self.fcos_prior_generator | |
def _init_layers(self) -> None: | |
"""Initialize layers of the head.""" | |
super(FCOSHead, self)._init_cls_convs() | |
super(FCOSHead, self)._init_reg_convs() | |
self.relu = nn.ReLU() | |
self.vfnet_reg_conv = ConvModule( | |
self.feat_channels, | |
self.feat_channels, | |
3, | |
stride=1, | |
padding=1, | |
conv_cfg=self.conv_cfg, | |
norm_cfg=self.norm_cfg, | |
bias=self.conv_bias) | |
self.vfnet_reg = nn.Conv2d(self.feat_channels, 4, 3, padding=1) | |
self.scales = nn.ModuleList([Scale(1.0) for _ in self.strides]) | |
self.vfnet_reg_refine_dconv = DeformConv2d( | |
self.feat_channels, | |
self.feat_channels, | |
self.dcn_kernel, | |
1, | |
padding=self.dcn_pad) | |
self.vfnet_reg_refine = nn.Conv2d(self.feat_channels, 4, 3, padding=1) | |
self.scales_refine = nn.ModuleList([Scale(1.0) for _ in self.strides]) | |
self.vfnet_cls_dconv = DeformConv2d( | |
self.feat_channels, | |
self.feat_channels, | |
self.dcn_kernel, | |
1, | |
padding=self.dcn_pad) | |
self.vfnet_cls = nn.Conv2d( | |
self.feat_channels, self.cls_out_channels, 3, padding=1) | |
def forward(self, x: Tuple[Tensor]) -> Tuple[List[Tensor]]: | |
"""Forward features from the upstream network. | |
Args: | |
x (tuple[Tensor]): Features from the upstream network, each is | |
a 4D-tensor. | |
Returns: | |
tuple: | |
- cls_scores (list[Tensor]): Box iou-aware scores for each scale | |
level, each is a 4D-tensor, the channel number is | |
num_points * num_classes. | |
- bbox_preds (list[Tensor]): Box offsets for each | |
scale level, each is a 4D-tensor, the channel number is | |
num_points * 4. | |
- bbox_preds_refine (list[Tensor]): Refined Box offsets for | |
each scale level, each is a 4D-tensor, the channel | |
number is num_points * 4. | |
""" | |
return multi_apply(self.forward_single, x, self.scales, | |
self.scales_refine, self.strides, self.reg_denoms) | |
def forward_single(self, x: Tensor, scale: Scale, scale_refine: Scale, | |
stride: int, reg_denom: int) -> tuple: | |
"""Forward features of a single scale level. | |
Args: | |
x (Tensor): FPN feature maps of the specified stride. | |
scale (:obj: `mmcv.cnn.Scale`): Learnable scale module to resize | |
the bbox prediction. | |
scale_refine (:obj: `mmcv.cnn.Scale`): Learnable scale module to | |
resize the refined bbox prediction. | |
stride (int): The corresponding stride for feature maps, | |
used to normalize the bbox prediction when | |
bbox_norm_type = 'stride'. | |
reg_denom (int): The corresponding regression range for feature | |
maps, only used to normalize the bbox prediction when | |
bbox_norm_type = 'reg_denom'. | |
Returns: | |
tuple: iou-aware cls scores for each box, bbox predictions and | |
refined bbox predictions of input feature maps. | |
""" | |
cls_feat = x | |
reg_feat = x | |
for cls_layer in self.cls_convs: | |
cls_feat = cls_layer(cls_feat) | |
for reg_layer in self.reg_convs: | |
reg_feat = reg_layer(reg_feat) | |
# predict the bbox_pred of different level | |
reg_feat_init = self.vfnet_reg_conv(reg_feat) | |
if self.bbox_norm_type == 'reg_denom': | |
bbox_pred = scale( | |
self.vfnet_reg(reg_feat_init)).float().exp() * reg_denom | |
elif self.bbox_norm_type == 'stride': | |
bbox_pred = scale( | |
self.vfnet_reg(reg_feat_init)).float().exp() * stride | |
else: | |
raise NotImplementedError | |
# compute star deformable convolution offsets | |
# converting dcn_offset to reg_feat.dtype thus VFNet can be | |
# trained with FP16 | |
dcn_offset = self.star_dcn_offset(bbox_pred, self.gradient_mul, | |
stride).to(reg_feat.dtype) | |
# refine the bbox_pred | |
reg_feat = self.relu(self.vfnet_reg_refine_dconv(reg_feat, dcn_offset)) | |
bbox_pred_refine = scale_refine( | |
self.vfnet_reg_refine(reg_feat)).float().exp() | |
bbox_pred_refine = bbox_pred_refine * bbox_pred.detach() | |
# predict the iou-aware cls score | |
cls_feat = self.relu(self.vfnet_cls_dconv(cls_feat, dcn_offset)) | |
cls_score = self.vfnet_cls(cls_feat) | |
if self.training: | |
return cls_score, bbox_pred, bbox_pred_refine | |
else: | |
return cls_score, bbox_pred_refine | |
def star_dcn_offset(self, bbox_pred: Tensor, gradient_mul: float, | |
stride: int) -> Tensor: | |
"""Compute the star deformable conv offsets. | |
Args: | |
bbox_pred (Tensor): Predicted bbox distance offsets (l, r, t, b). | |
gradient_mul (float): Gradient multiplier. | |
stride (int): The corresponding stride for feature maps, | |
used to project the bbox onto the feature map. | |
Returns: | |
Tensor: The offsets for deformable convolution. | |
""" | |
dcn_base_offset = self.dcn_base_offset.type_as(bbox_pred) | |
bbox_pred_grad_mul = (1 - gradient_mul) * bbox_pred.detach() + \ | |
gradient_mul * bbox_pred | |
# map to the feature map scale | |
bbox_pred_grad_mul = bbox_pred_grad_mul / stride | |
N, C, H, W = bbox_pred.size() | |
x1 = bbox_pred_grad_mul[:, 0, :, :] | |
y1 = bbox_pred_grad_mul[:, 1, :, :] | |
x2 = bbox_pred_grad_mul[:, 2, :, :] | |
y2 = bbox_pred_grad_mul[:, 3, :, :] | |
bbox_pred_grad_mul_offset = bbox_pred.new_zeros( | |
N, 2 * self.num_dconv_points, H, W) | |
bbox_pred_grad_mul_offset[:, 0, :, :] = -1.0 * y1 # -y1 | |
bbox_pred_grad_mul_offset[:, 1, :, :] = -1.0 * x1 # -x1 | |
bbox_pred_grad_mul_offset[:, 2, :, :] = -1.0 * y1 # -y1 | |
bbox_pred_grad_mul_offset[:, 4, :, :] = -1.0 * y1 # -y1 | |
bbox_pred_grad_mul_offset[:, 5, :, :] = x2 # x2 | |
bbox_pred_grad_mul_offset[:, 7, :, :] = -1.0 * x1 # -x1 | |
bbox_pred_grad_mul_offset[:, 11, :, :] = x2 # x2 | |
bbox_pred_grad_mul_offset[:, 12, :, :] = y2 # y2 | |
bbox_pred_grad_mul_offset[:, 13, :, :] = -1.0 * x1 # -x1 | |
bbox_pred_grad_mul_offset[:, 14, :, :] = y2 # y2 | |
bbox_pred_grad_mul_offset[:, 16, :, :] = y2 # y2 | |
bbox_pred_grad_mul_offset[:, 17, :, :] = x2 # x2 | |
dcn_offset = bbox_pred_grad_mul_offset - dcn_base_offset | |
return dcn_offset | |
def loss_by_feat( | |
self, | |
cls_scores: List[Tensor], | |
bbox_preds: List[Tensor], | |
bbox_preds_refine: List[Tensor], | |
batch_gt_instances: InstanceList, | |
batch_img_metas: List[dict], | |
batch_gt_instances_ignore: OptInstanceList = None) -> dict: | |
"""Compute loss of the head. | |
Args: | |
cls_scores (list[Tensor]): Box iou-aware scores for each scale | |
level, each is a 4D-tensor, the channel number is | |
num_points * num_classes. | |
bbox_preds (list[Tensor]): Box offsets for each | |
scale level, each is a 4D-tensor, the channel number is | |
num_points * 4. | |
bbox_preds_refine (list[Tensor]): Refined Box offsets for | |
each scale level, each is a 4D-tensor, the channel | |
number is num_points * 4. | |
batch_gt_instances (list[:obj:`InstanceData`]): Batch of | |
gt_instance. It usually includes ``bboxes`` and ``labels`` | |
attributes. | |
batch_img_metas (list[dict]): Meta information of each image, e.g., | |
image size, scaling factor, etc. | |
batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional): | |
Batch of gt_instances_ignore. It includes ``bboxes`` attribute | |
data that is ignored during training and testing. | |
Defaults to None. | |
Returns: | |
dict[str, Tensor]: A dictionary of loss components. | |
""" | |
assert len(cls_scores) == len(bbox_preds) == len(bbox_preds_refine) | |
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] | |
all_level_points = self.fcos_prior_generator.grid_priors( | |
featmap_sizes, bbox_preds[0].dtype, bbox_preds[0].device) | |
labels, label_weights, bbox_targets, bbox_weights = self.get_targets( | |
cls_scores, | |
all_level_points, | |
batch_gt_instances, | |
batch_img_metas, | |
batch_gt_instances_ignore=batch_gt_instances_ignore) | |
num_imgs = cls_scores[0].size(0) | |
# flatten cls_scores, bbox_preds and bbox_preds_refine | |
flatten_cls_scores = [ | |
cls_score.permute(0, 2, 3, | |
1).reshape(-1, | |
self.cls_out_channels).contiguous() | |
for cls_score in cls_scores | |
] | |
flatten_bbox_preds = [ | |
bbox_pred.permute(0, 2, 3, 1).reshape(-1, 4).contiguous() | |
for bbox_pred in bbox_preds | |
] | |
flatten_bbox_preds_refine = [ | |
bbox_pred_refine.permute(0, 2, 3, 1).reshape(-1, 4).contiguous() | |
for bbox_pred_refine in bbox_preds_refine | |
] | |
flatten_cls_scores = torch.cat(flatten_cls_scores) | |
flatten_bbox_preds = torch.cat(flatten_bbox_preds) | |
flatten_bbox_preds_refine = torch.cat(flatten_bbox_preds_refine) | |
flatten_labels = torch.cat(labels) | |
flatten_bbox_targets = torch.cat(bbox_targets) | |
# repeat points to align with bbox_preds | |
flatten_points = torch.cat( | |
[points.repeat(num_imgs, 1) for points in all_level_points]) | |
# FG cat_id: [0, num_classes - 1], BG cat_id: num_classes | |
bg_class_ind = self.num_classes | |
pos_inds = torch.where( | |
((flatten_labels >= 0) & (flatten_labels < bg_class_ind)) > 0)[0] | |
num_pos = len(pos_inds) | |
pos_bbox_preds = flatten_bbox_preds[pos_inds] | |
pos_bbox_preds_refine = flatten_bbox_preds_refine[pos_inds] | |
pos_labels = flatten_labels[pos_inds] | |
# sync num_pos across all gpus | |
if self.sync_num_pos: | |
num_pos_avg_per_gpu = reduce_mean( | |
pos_inds.new_tensor(num_pos).float()).item() | |
num_pos_avg_per_gpu = max(num_pos_avg_per_gpu, 1.0) | |
else: | |
num_pos_avg_per_gpu = num_pos | |
pos_bbox_targets = flatten_bbox_targets[pos_inds] | |
pos_points = flatten_points[pos_inds] | |
pos_decoded_bbox_preds = self.bbox_coder.decode( | |
pos_points, pos_bbox_preds) | |
pos_decoded_target_preds = self.bbox_coder.decode( | |
pos_points, pos_bbox_targets) | |
iou_targets_ini = bbox_overlaps( | |
pos_decoded_bbox_preds, | |
pos_decoded_target_preds.detach(), | |
is_aligned=True).clamp(min=1e-6) | |
bbox_weights_ini = iou_targets_ini.clone().detach() | |
bbox_avg_factor_ini = reduce_mean( | |
bbox_weights_ini.sum()).clamp_(min=1).item() | |
pos_decoded_bbox_preds_refine = \ | |
self.bbox_coder.decode(pos_points, pos_bbox_preds_refine) | |
iou_targets_rf = bbox_overlaps( | |
pos_decoded_bbox_preds_refine, | |
pos_decoded_target_preds.detach(), | |
is_aligned=True).clamp(min=1e-6) | |
bbox_weights_rf = iou_targets_rf.clone().detach() | |
bbox_avg_factor_rf = reduce_mean( | |
bbox_weights_rf.sum()).clamp_(min=1).item() | |
if num_pos > 0: | |
loss_bbox = self.loss_bbox( | |
pos_decoded_bbox_preds, | |
pos_decoded_target_preds.detach(), | |
weight=bbox_weights_ini, | |
avg_factor=bbox_avg_factor_ini) | |
loss_bbox_refine = self.loss_bbox_refine( | |
pos_decoded_bbox_preds_refine, | |
pos_decoded_target_preds.detach(), | |
weight=bbox_weights_rf, | |
avg_factor=bbox_avg_factor_rf) | |
# build IoU-aware cls_score targets | |
if self.use_vfl: | |
pos_ious = iou_targets_rf.clone().detach() | |
cls_iou_targets = torch.zeros_like(flatten_cls_scores) | |
cls_iou_targets[pos_inds, pos_labels] = pos_ious | |
else: | |
loss_bbox = pos_bbox_preds.sum() * 0 | |
loss_bbox_refine = pos_bbox_preds_refine.sum() * 0 | |
if self.use_vfl: | |
cls_iou_targets = torch.zeros_like(flatten_cls_scores) | |
if self.use_vfl: | |
loss_cls = self.loss_cls( | |
flatten_cls_scores, | |
cls_iou_targets, | |
avg_factor=num_pos_avg_per_gpu) | |
else: | |
loss_cls = self.loss_cls( | |
flatten_cls_scores, | |
flatten_labels, | |
weight=label_weights, | |
avg_factor=num_pos_avg_per_gpu) | |
return dict( | |
loss_cls=loss_cls, | |
loss_bbox=loss_bbox, | |
loss_bbox_rf=loss_bbox_refine) | |
def get_targets( | |
self, | |
cls_scores: List[Tensor], | |
mlvl_points: List[Tensor], | |
batch_gt_instances: InstanceList, | |
batch_img_metas: List[dict], | |
batch_gt_instances_ignore: OptInstanceList = None) -> tuple: | |
"""A wrapper for computing ATSS and FCOS targets for points in multiple | |
images. | |
Args: | |
cls_scores (list[Tensor]): Box iou-aware scores for each scale | |
level with shape (N, num_points * num_classes, H, W). | |
mlvl_points (list[Tensor]): Points of each fpn level, each has | |
shape (num_points, 2). | |
batch_gt_instances (list[:obj:`InstanceData`]): Batch of | |
gt_instance. It usually includes ``bboxes`` and ``labels`` | |
attributes. | |
batch_img_metas (list[dict]): Meta information of each image, e.g., | |
image size, scaling factor, etc. | |
batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional): | |
Batch of gt_instances_ignore. It includes ``bboxes`` attribute | |
data that is ignored during training and testing. | |
Defaults to None. | |
Returns: | |
tuple: | |
- labels_list (list[Tensor]): Labels of each level. | |
- label_weights (Tensor/None): Label weights of all levels. | |
- bbox_targets_list (list[Tensor]): Regression targets of each | |
level, (l, t, r, b). | |
- bbox_weights (Tensor/None): Bbox weights of all levels. | |
""" | |
if self.use_atss: | |
return self.get_atss_targets(cls_scores, mlvl_points, | |
batch_gt_instances, batch_img_metas, | |
batch_gt_instances_ignore) | |
else: | |
self.norm_on_bbox = False | |
return self.get_fcos_targets(mlvl_points, batch_gt_instances) | |
def _get_targets_single(self, *args, **kwargs): | |
"""Avoid ambiguity in multiple inheritance.""" | |
if self.use_atss: | |
return ATSSHead._get_targets_single(self, *args, **kwargs) | |
else: | |
return FCOSHead._get_targets_single(self, *args, **kwargs) | |
def get_fcos_targets(self, points: List[Tensor], | |
batch_gt_instances: InstanceList) -> tuple: | |
"""Compute FCOS regression and classification targets for points in | |
multiple images. | |
Args: | |
points (list[Tensor]): Points of each fpn level, each has shape | |
(num_points, 2). | |
batch_gt_instances (list[:obj:`InstanceData`]): Batch of | |
gt_instance. It usually includes ``bboxes`` and ``labels`` | |
attributes. | |
Returns: | |
tuple: | |
- labels (list[Tensor]): Labels of each level. | |
- label_weights: None, to be compatible with ATSS targets. | |
- bbox_targets (list[Tensor]): BBox targets of each level. | |
- bbox_weights: None, to be compatible with ATSS targets. | |
""" | |
labels, bbox_targets = FCOSHead.get_targets(self, points, | |
batch_gt_instances) | |
label_weights = None | |
bbox_weights = None | |
return labels, label_weights, bbox_targets, bbox_weights | |
def get_anchors(self, | |
featmap_sizes: List[Tuple], | |
batch_img_metas: List[dict], | |
device: str = 'cuda') -> tuple: | |
"""Get anchors according to feature map sizes. | |
Args: | |
featmap_sizes (list[tuple]): Multi-level feature map sizes. | |
batch_img_metas (list[dict]): Image meta info. | |
device (str): Device for returned tensors | |
Returns: | |
tuple: | |
- anchor_list (list[Tensor]): Anchors of each image. | |
- valid_flag_list (list[Tensor]): Valid flags of each image. | |
""" | |
num_imgs = len(batch_img_metas) | |
# since feature map sizes of all images are the same, we only compute | |
# anchors for one time | |
multi_level_anchors = self.atss_prior_generator.grid_priors( | |
featmap_sizes, device=device) | |
anchor_list = [multi_level_anchors for _ in range(num_imgs)] | |
# for each image, we compute valid flags of multi level anchors | |
valid_flag_list = [] | |
for img_id, img_meta in enumerate(batch_img_metas): | |
multi_level_flags = self.atss_prior_generator.valid_flags( | |
featmap_sizes, img_meta['pad_shape'], device=device) | |
valid_flag_list.append(multi_level_flags) | |
return anchor_list, valid_flag_list | |
def get_atss_targets( | |
self, | |
cls_scores: List[Tensor], | |
mlvl_points: List[Tensor], | |
batch_gt_instances: InstanceList, | |
batch_img_metas: List[dict], | |
batch_gt_instances_ignore: OptInstanceList = None) -> tuple: | |
"""A wrapper for computing ATSS targets for points in multiple images. | |
Args: | |
cls_scores (list[Tensor]): Box iou-aware scores for each scale | |
level with shape (N, num_points * num_classes, H, W). | |
mlvl_points (list[Tensor]): Points of each fpn level, each has | |
shape (num_points, 2). | |
batch_gt_instances (list[:obj:`InstanceData`]): Batch of | |
gt_instance. It usually includes ``bboxes`` and ``labels`` | |
attributes. | |
batch_img_metas (list[dict]): Meta information of each image, e.g., | |
image size, scaling factor, etc. | |
batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional): | |
Batch of gt_instances_ignore. It includes ``bboxes`` attribute | |
data that is ignored during training and testing. | |
Defaults to None. | |
Returns: | |
tuple: | |
- labels_list (list[Tensor]): Labels of each level. | |
- label_weights (Tensor): Label weights of all levels. | |
- bbox_targets_list (list[Tensor]): Regression targets of each | |
level, (l, t, r, b). | |
- bbox_weights (Tensor): Bbox weights of all levels. | |
""" | |
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] | |
assert len( | |
featmap_sizes | |
) == self.atss_prior_generator.num_levels == \ | |
self.fcos_prior_generator.num_levels | |
device = cls_scores[0].device | |
anchor_list, valid_flag_list = self.get_anchors( | |
featmap_sizes, batch_img_metas, device=device) | |
cls_reg_targets = ATSSHead.get_targets( | |
self, | |
anchor_list, | |
valid_flag_list, | |
batch_gt_instances, | |
batch_img_metas, | |
batch_gt_instances_ignore, | |
unmap_outputs=True) | |
(anchor_list, labels_list, label_weights_list, bbox_targets_list, | |
bbox_weights_list, avg_factor) = cls_reg_targets | |
bbox_targets_list = [ | |
bbox_targets.reshape(-1, 4) for bbox_targets in bbox_targets_list | |
] | |
num_imgs = len(batch_img_metas) | |
# transform bbox_targets (x1, y1, x2, y2) into (l, t, r, b) format | |
bbox_targets_list = self.transform_bbox_targets( | |
bbox_targets_list, mlvl_points, num_imgs) | |
labels_list = [labels.reshape(-1) for labels in labels_list] | |
label_weights_list = [ | |
label_weights.reshape(-1) for label_weights in label_weights_list | |
] | |
bbox_weights_list = [ | |
bbox_weights.reshape(-1) for bbox_weights in bbox_weights_list | |
] | |
label_weights = torch.cat(label_weights_list) | |
bbox_weights = torch.cat(bbox_weights_list) | |
return labels_list, label_weights, bbox_targets_list, bbox_weights | |
def transform_bbox_targets(self, decoded_bboxes: List[Tensor], | |
mlvl_points: List[Tensor], | |
num_imgs: int) -> List[Tensor]: | |
"""Transform bbox_targets (x1, y1, x2, y2) into (l, t, r, b) format. | |
Args: | |
decoded_bboxes (list[Tensor]): Regression targets of each level, | |
in the form of (x1, y1, x2, y2). | |
mlvl_points (list[Tensor]): Points of each fpn level, each has | |
shape (num_points, 2). | |
num_imgs (int): the number of images in a batch. | |
Returns: | |
bbox_targets (list[Tensor]): Regression targets of each level in | |
the form of (l, t, r, b). | |
""" | |
# TODO: Re-implemented in Class PointCoder | |
assert len(decoded_bboxes) == len(mlvl_points) | |
num_levels = len(decoded_bboxes) | |
mlvl_points = [points.repeat(num_imgs, 1) for points in mlvl_points] | |
bbox_targets = [] | |
for i in range(num_levels): | |
bbox_target = self.bbox_coder.encode(mlvl_points[i], | |
decoded_bboxes[i]) | |
bbox_targets.append(bbox_target) | |
return bbox_targets | |
def _load_from_state_dict(self, state_dict: dict, prefix: str, | |
local_metadata: dict, strict: bool, | |
missing_keys: Union[List[str], str], | |
unexpected_keys: Union[List[str], str], | |
error_msgs: Union[List[str], str]) -> None: | |
"""Override the method in the parent class to avoid changing para's | |
name.""" | |
pass | |