KyanChen's picture
Upload 787 files
3e06e1c
raw
history blame
19.9 kB
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, List, Tuple
import torch
import torch.nn as nn
from mmcv.cnn import Scale
from mmengine.structures import InstanceData
from torch import Tensor
from mmdet.registry import MODELS
from mmdet.utils import (ConfigType, InstanceList, MultiConfig,
OptInstanceList, RangeType, reduce_mean)
from ..utils import multi_apply
from .anchor_free_head import AnchorFreeHead
INF = 1e8
@MODELS.register_module()
class FCOSHead(AnchorFreeHead):
"""Anchor-free head used in `FCOS <https://arxiv.org/abs/1904.01355>`_.
The FCOS head does not use anchor boxes. Instead bounding boxes are
predicted at each pixel and a centerness measure is used to suppress
low-quality predictions.
Here norm_on_bbox, centerness_on_reg, dcn_on_last_conv are training
tricks used in official repo, which will bring remarkable mAP gains
of up to 4.9. Please see https://github.com/tianzhi0549/FCOS for
more detail.
Args:
num_classes (int): Number of categories excluding the background
category.
in_channels (int): Number of channels in the input feature map.
strides (Sequence[int] or Sequence[Tuple[int, int]]): Strides of points
in multiple feature levels. Defaults to (4, 8, 16, 32, 64).
regress_ranges (Sequence[Tuple[int, int]]): Regress range of multiple
level points.
center_sampling (bool): If true, use center sampling.
Defaults to False.
center_sample_radius (float): Radius of center sampling.
Defaults to 1.5.
norm_on_bbox (bool): If true, normalize the regression targets with
FPN strides. Defaults to False.
centerness_on_reg (bool): If true, position centerness on the
regress branch. Please refer to https://github.com/tianzhi0549/FCOS/issues/89#issuecomment-516877042.
Defaults to False.
conv_bias (bool or str): If specified as `auto`, it will be decided by
the norm_cfg. Bias of conv will be set as True if `norm_cfg` is
None, otherwise False. Defaults to "auto".
loss_cls (:obj:`ConfigDict` or dict): Config of classification loss.
loss_bbox (:obj:`ConfigDict` or dict): Config of localization loss.
loss_centerness (:obj:`ConfigDict`, or dict): Config of centerness
loss.
norm_cfg (:obj:`ConfigDict` or dict): dictionary to construct and
config norm layer. Defaults to
``norm_cfg=dict(type='GN', num_groups=32, requires_grad=True)``.
init_cfg (:obj:`ConfigDict` or dict or list[:obj:`ConfigDict` or \
dict]): Initialization config dict.
Example:
>>> self = FCOSHead(11, 7)
>>> feats = [torch.rand(1, 7, s, s) for s in [4, 8, 16, 32, 64]]
>>> cls_score, bbox_pred, centerness = self.forward(feats)
>>> assert len(cls_score) == len(self.scales)
""" # noqa: E501
def __init__(self,
num_classes: int,
in_channels: int,
regress_ranges: RangeType = ((-1, 64), (64, 128), (128, 256),
(256, 512), (512, INF)),
center_sampling: bool = False,
center_sample_radius: float = 1.5,
norm_on_bbox: bool = False,
centerness_on_reg: bool = False,
loss_cls: ConfigType = dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
loss_bbox: ConfigType = dict(type='IoULoss', loss_weight=1.0),
loss_centerness: ConfigType = dict(
type='CrossEntropyLoss',
use_sigmoid=True,
loss_weight=1.0),
norm_cfg: ConfigType = dict(
type='GN', num_groups=32, requires_grad=True),
init_cfg: MultiConfig = dict(
type='Normal',
layer='Conv2d',
std=0.01,
override=dict(
type='Normal',
name='conv_cls',
std=0.01,
bias_prob=0.01)),
**kwargs) -> None:
self.regress_ranges = regress_ranges
self.center_sampling = center_sampling
self.center_sample_radius = center_sample_radius
self.norm_on_bbox = norm_on_bbox
self.centerness_on_reg = centerness_on_reg
super().__init__(
num_classes=num_classes,
in_channels=in_channels,
loss_cls=loss_cls,
loss_bbox=loss_bbox,
norm_cfg=norm_cfg,
init_cfg=init_cfg,
**kwargs)
self.loss_centerness = MODELS.build(loss_centerness)
def _init_layers(self) -> None:
"""Initialize layers of the head."""
super()._init_layers()
self.conv_centerness = nn.Conv2d(self.feat_channels, 1, 3, padding=1)
self.scales = nn.ModuleList([Scale(1.0) for _ in self.strides])
def forward(
self, x: Tuple[Tensor]
) -> Tuple[List[Tensor], List[Tensor], List[Tensor]]:
"""Forward features from the upstream network.
Args:
feats (tuple[Tensor]): Features from the upstream network, each is
a 4D-tensor.
Returns:
tuple: A tuple of each level outputs.
- cls_scores (list[Tensor]): Box scores for each scale level, \
each is a 4D-tensor, the channel number is \
num_points * num_classes.
- bbox_preds (list[Tensor]): Box energies / deltas for each \
scale level, each is a 4D-tensor, the channel number is \
num_points * 4.
- centernesses (list[Tensor]): centerness for each scale level, \
each is a 4D-tensor, the channel number is num_points * 1.
"""
return multi_apply(self.forward_single, x, self.scales, self.strides)
def forward_single(self, x: Tensor, scale: Scale,
stride: int) -> Tuple[Tensor, Tensor, Tensor]:
"""Forward features of a single scale level.
Args:
x (Tensor): FPN feature maps of the specified stride.
scale (:obj:`mmcv.cnn.Scale`): Learnable scale module to resize
the bbox prediction.
stride (int): The corresponding stride for feature maps, only
used to normalize the bbox prediction when self.norm_on_bbox
is True.
Returns:
tuple: scores for each class, bbox predictions and centerness
predictions of input feature maps.
"""
cls_score, bbox_pred, cls_feat, reg_feat = super().forward_single(x)
if self.centerness_on_reg:
centerness = self.conv_centerness(reg_feat)
else:
centerness = self.conv_centerness(cls_feat)
# scale the bbox_pred of different level
# float to avoid overflow when enabling FP16
bbox_pred = scale(bbox_pred).float()
if self.norm_on_bbox:
# bbox_pred needed for gradient computation has been modified
# by F.relu(bbox_pred) when run with PyTorch 1.10. So replace
# F.relu(bbox_pred) with bbox_pred.clamp(min=0)
bbox_pred = bbox_pred.clamp(min=0)
if not self.training:
bbox_pred *= stride
else:
bbox_pred = bbox_pred.exp()
return cls_score, bbox_pred, centerness
def loss_by_feat(
self,
cls_scores: List[Tensor],
bbox_preds: List[Tensor],
centernesses: List[Tensor],
batch_gt_instances: InstanceList,
batch_img_metas: List[dict],
batch_gt_instances_ignore: OptInstanceList = None
) -> Dict[str, Tensor]:
"""Calculate the loss based on the features extracted by the detection
head.
Args:
cls_scores (list[Tensor]): Box scores for each scale level,
each is a 4D-tensor, the channel number is
num_points * num_classes.
bbox_preds (list[Tensor]): Box energies / deltas for each scale
level, each is a 4D-tensor, the channel number is
num_points * 4.
centernesses (list[Tensor]): centerness for each scale level, each
is a 4D-tensor, the channel number is num_points * 1.
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes`` and ``labels``
attributes.
batch_img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional):
Batch of gt_instances_ignore. It includes ``bboxes`` attribute
data that is ignored during training and testing.
Defaults to None.
Returns:
dict[str, Tensor]: A dictionary of loss components.
"""
assert len(cls_scores) == len(bbox_preds) == len(centernesses)
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
all_level_points = self.prior_generator.grid_priors(
featmap_sizes,
dtype=bbox_preds[0].dtype,
device=bbox_preds[0].device)
labels, bbox_targets = self.get_targets(all_level_points,
batch_gt_instances)
num_imgs = cls_scores[0].size(0)
# flatten cls_scores, bbox_preds and centerness
flatten_cls_scores = [
cls_score.permute(0, 2, 3, 1).reshape(-1, self.cls_out_channels)
for cls_score in cls_scores
]
flatten_bbox_preds = [
bbox_pred.permute(0, 2, 3, 1).reshape(-1, 4)
for bbox_pred in bbox_preds
]
flatten_centerness = [
centerness.permute(0, 2, 3, 1).reshape(-1)
for centerness in centernesses
]
flatten_cls_scores = torch.cat(flatten_cls_scores)
flatten_bbox_preds = torch.cat(flatten_bbox_preds)
flatten_centerness = torch.cat(flatten_centerness)
flatten_labels = torch.cat(labels)
flatten_bbox_targets = torch.cat(bbox_targets)
# repeat points to align with bbox_preds
flatten_points = torch.cat(
[points.repeat(num_imgs, 1) for points in all_level_points])
# FG cat_id: [0, num_classes -1], BG cat_id: num_classes
bg_class_ind = self.num_classes
pos_inds = ((flatten_labels >= 0)
& (flatten_labels < bg_class_ind)).nonzero().reshape(-1)
num_pos = torch.tensor(
len(pos_inds), dtype=torch.float, device=bbox_preds[0].device)
num_pos = max(reduce_mean(num_pos), 1.0)
loss_cls = self.loss_cls(
flatten_cls_scores, flatten_labels, avg_factor=num_pos)
pos_bbox_preds = flatten_bbox_preds[pos_inds]
pos_centerness = flatten_centerness[pos_inds]
pos_bbox_targets = flatten_bbox_targets[pos_inds]
pos_centerness_targets = self.centerness_target(pos_bbox_targets)
# centerness weighted iou loss
centerness_denorm = max(
reduce_mean(pos_centerness_targets.sum().detach()), 1e-6)
if len(pos_inds) > 0:
pos_points = flatten_points[pos_inds]
pos_decoded_bbox_preds = self.bbox_coder.decode(
pos_points, pos_bbox_preds)
pos_decoded_target_preds = self.bbox_coder.decode(
pos_points, pos_bbox_targets)
loss_bbox = self.loss_bbox(
pos_decoded_bbox_preds,
pos_decoded_target_preds,
weight=pos_centerness_targets,
avg_factor=centerness_denorm)
loss_centerness = self.loss_centerness(
pos_centerness, pos_centerness_targets, avg_factor=num_pos)
else:
loss_bbox = pos_bbox_preds.sum()
loss_centerness = pos_centerness.sum()
return dict(
loss_cls=loss_cls,
loss_bbox=loss_bbox,
loss_centerness=loss_centerness)
def get_targets(
self, points: List[Tensor], batch_gt_instances: InstanceList
) -> Tuple[List[Tensor], List[Tensor]]:
"""Compute regression, classification and centerness targets for points
in multiple images.
Args:
points (list[Tensor]): Points of each fpn level, each has shape
(num_points, 2).
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes`` and ``labels``
attributes.
Returns:
tuple: Targets of each level.
- concat_lvl_labels (list[Tensor]): Labels of each level.
- concat_lvl_bbox_targets (list[Tensor]): BBox targets of each \
level.
"""
assert len(points) == len(self.regress_ranges)
num_levels = len(points)
# expand regress ranges to align with points
expanded_regress_ranges = [
points[i].new_tensor(self.regress_ranges[i])[None].expand_as(
points[i]) for i in range(num_levels)
]
# concat all levels points and regress ranges
concat_regress_ranges = torch.cat(expanded_regress_ranges, dim=0)
concat_points = torch.cat(points, dim=0)
# the number of points per img, per lvl
num_points = [center.size(0) for center in points]
# get labels and bbox_targets of each image
labels_list, bbox_targets_list = multi_apply(
self._get_targets_single,
batch_gt_instances,
points=concat_points,
regress_ranges=concat_regress_ranges,
num_points_per_lvl=num_points)
# split to per img, per level
labels_list = [labels.split(num_points, 0) for labels in labels_list]
bbox_targets_list = [
bbox_targets.split(num_points, 0)
for bbox_targets in bbox_targets_list
]
# concat per level image
concat_lvl_labels = []
concat_lvl_bbox_targets = []
for i in range(num_levels):
concat_lvl_labels.append(
torch.cat([labels[i] for labels in labels_list]))
bbox_targets = torch.cat(
[bbox_targets[i] for bbox_targets in bbox_targets_list])
if self.norm_on_bbox:
bbox_targets = bbox_targets / self.strides[i]
concat_lvl_bbox_targets.append(bbox_targets)
return concat_lvl_labels, concat_lvl_bbox_targets
def _get_targets_single(
self, gt_instances: InstanceData, points: Tensor,
regress_ranges: Tensor,
num_points_per_lvl: List[int]) -> Tuple[Tensor, Tensor]:
"""Compute regression and classification targets for a single image."""
num_points = points.size(0)
num_gts = len(gt_instances)
gt_bboxes = gt_instances.bboxes
gt_labels = gt_instances.labels
if num_gts == 0:
return gt_labels.new_full((num_points,), self.num_classes), \
gt_bboxes.new_zeros((num_points, 4))
areas = (gt_bboxes[:, 2] - gt_bboxes[:, 0]) * (
gt_bboxes[:, 3] - gt_bboxes[:, 1])
# TODO: figure out why these two are different
# areas = areas[None].expand(num_points, num_gts)
areas = areas[None].repeat(num_points, 1)
regress_ranges = regress_ranges[:, None, :].expand(
num_points, num_gts, 2)
gt_bboxes = gt_bboxes[None].expand(num_points, num_gts, 4)
xs, ys = points[:, 0], points[:, 1]
xs = xs[:, None].expand(num_points, num_gts)
ys = ys[:, None].expand(num_points, num_gts)
left = xs - gt_bboxes[..., 0]
right = gt_bboxes[..., 2] - xs
top = ys - gt_bboxes[..., 1]
bottom = gt_bboxes[..., 3] - ys
bbox_targets = torch.stack((left, top, right, bottom), -1)
if self.center_sampling:
# condition1: inside a `center bbox`
radius = self.center_sample_radius
center_xs = (gt_bboxes[..., 0] + gt_bboxes[..., 2]) / 2
center_ys = (gt_bboxes[..., 1] + gt_bboxes[..., 3]) / 2
center_gts = torch.zeros_like(gt_bboxes)
stride = center_xs.new_zeros(center_xs.shape)
# project the points on current lvl back to the `original` sizes
lvl_begin = 0
for lvl_idx, num_points_lvl in enumerate(num_points_per_lvl):
lvl_end = lvl_begin + num_points_lvl
stride[lvl_begin:lvl_end] = self.strides[lvl_idx] * radius
lvl_begin = lvl_end
x_mins = center_xs - stride
y_mins = center_ys - stride
x_maxs = center_xs + stride
y_maxs = center_ys + stride
center_gts[..., 0] = torch.where(x_mins > gt_bboxes[..., 0],
x_mins, gt_bboxes[..., 0])
center_gts[..., 1] = torch.where(y_mins > gt_bboxes[..., 1],
y_mins, gt_bboxes[..., 1])
center_gts[..., 2] = torch.where(x_maxs > gt_bboxes[..., 2],
gt_bboxes[..., 2], x_maxs)
center_gts[..., 3] = torch.where(y_maxs > gt_bboxes[..., 3],
gt_bboxes[..., 3], y_maxs)
cb_dist_left = xs - center_gts[..., 0]
cb_dist_right = center_gts[..., 2] - xs
cb_dist_top = ys - center_gts[..., 1]
cb_dist_bottom = center_gts[..., 3] - ys
center_bbox = torch.stack(
(cb_dist_left, cb_dist_top, cb_dist_right, cb_dist_bottom), -1)
inside_gt_bbox_mask = center_bbox.min(-1)[0] > 0
else:
# condition1: inside a gt bbox
inside_gt_bbox_mask = bbox_targets.min(-1)[0] > 0
# condition2: limit the regression range for each location
max_regress_distance = bbox_targets.max(-1)[0]
inside_regress_range = (
(max_regress_distance >= regress_ranges[..., 0])
& (max_regress_distance <= regress_ranges[..., 1]))
# if there are still more than one objects for a location,
# we choose the one with minimal area
areas[inside_gt_bbox_mask == 0] = INF
areas[inside_regress_range == 0] = INF
min_area, min_area_inds = areas.min(dim=1)
labels = gt_labels[min_area_inds]
labels[min_area == INF] = self.num_classes # set as BG
bbox_targets = bbox_targets[range(num_points), min_area_inds]
return labels, bbox_targets
def centerness_target(self, pos_bbox_targets: Tensor) -> Tensor:
"""Compute centerness targets.
Args:
pos_bbox_targets (Tensor): BBox targets of positive bboxes in shape
(num_pos, 4)
Returns:
Tensor: Centerness target.
"""
# only calculate pos centerness targets, otherwise there may be nan
left_right = pos_bbox_targets[:, [0, 2]]
top_bottom = pos_bbox_targets[:, [1, 3]]
if len(left_right) == 0:
centerness_targets = left_right[..., 0]
else:
centerness_targets = (
left_right.min(dim=-1)[0] / left_right.max(dim=-1)[0]) * (
top_bottom.min(dim=-1)[0] / top_bottom.max(dim=-1)[0])
return torch.sqrt(centerness_targets)