RSPrompter / mmdet /models /dense_heads /base_dense_head.py
KyanChen's picture
Upload 787 files
3e06e1c
raw
history blame
24.2 kB
# Copyright (c) OpenMMLab. All rights reserved.
import copy
from abc import ABCMeta, abstractmethod
from inspect import signature
from typing import List, Optional, Tuple
import torch
from mmcv.ops import batched_nms
from mmengine.config import ConfigDict
from mmengine.model import BaseModule, constant_init
from mmengine.structures import InstanceData
from torch import Tensor
from mmdet.structures import SampleList
from mmdet.structures.bbox import (cat_boxes, get_box_tensor, get_box_wh,
scale_boxes)
from mmdet.utils import InstanceList, OptMultiConfig
from ..test_time_augs import merge_aug_results
from ..utils import (filter_scores_and_topk, select_single_mlvl,
unpack_gt_instances)
class BaseDenseHead(BaseModule, metaclass=ABCMeta):
"""Base class for DenseHeads.
1. The ``init_weights`` method is used to initialize densehead's
model parameters. After detector initialization, ``init_weights``
is triggered when ``detector.init_weights()`` is called externally.
2. The ``loss`` method is used to calculate the loss of densehead,
which includes two steps: (1) the densehead model performs forward
propagation to obtain the feature maps (2) The ``loss_by_feat`` method
is called based on the feature maps to calculate the loss.
.. code:: text
loss(): forward() -> loss_by_feat()
3. The ``predict`` method is used to predict detection results,
which includes two steps: (1) the densehead model performs forward
propagation to obtain the feature maps (2) The ``predict_by_feat`` method
is called based on the feature maps to predict detection results including
post-processing.
.. code:: text
predict(): forward() -> predict_by_feat()
4. The ``loss_and_predict`` method is used to return loss and detection
results at the same time. It will call densehead's ``forward``,
``loss_by_feat`` and ``predict_by_feat`` methods in order. If one-stage is
used as RPN, the densehead needs to return both losses and predictions.
This predictions is used as the proposal of roihead.
.. code:: text
loss_and_predict(): forward() -> loss_by_feat() -> predict_by_feat()
"""
def __init__(self, init_cfg: OptMultiConfig = None) -> None:
super().__init__(init_cfg=init_cfg)
# `_raw_positive_infos` will be used in `get_positive_infos`, which
# can get positive information.
self._raw_positive_infos = dict()
def init_weights(self) -> None:
"""Initialize the weights."""
super().init_weights()
# avoid init_cfg overwrite the initialization of `conv_offset`
for m in self.modules():
# DeformConv2dPack, ModulatedDeformConv2dPack
if hasattr(m, 'conv_offset'):
constant_init(m.conv_offset, 0)
def get_positive_infos(self) -> InstanceList:
"""Get positive information from sampling results.
Returns:
list[:obj:`InstanceData`]: Positive information of each image,
usually including positive bboxes, positive labels, positive
priors, etc.
"""
if len(self._raw_positive_infos) == 0:
return None
sampling_results = self._raw_positive_infos.get(
'sampling_results', None)
assert sampling_results is not None
positive_infos = []
for sampling_result in enumerate(sampling_results):
pos_info = InstanceData()
pos_info.bboxes = sampling_result.pos_gt_bboxes
pos_info.labels = sampling_result.pos_gt_labels
pos_info.priors = sampling_result.pos_priors
pos_info.pos_assigned_gt_inds = \
sampling_result.pos_assigned_gt_inds
pos_info.pos_inds = sampling_result.pos_inds
positive_infos.append(pos_info)
return positive_infos
def loss(self, x: Tuple[Tensor], batch_data_samples: SampleList) -> dict:
"""Perform forward propagation and loss calculation of the detection
head on the features of the upstream network.
Args:
x (tuple[Tensor]): Features from the upstream network, each is
a 4D-tensor.
batch_data_samples (List[:obj:`DetDataSample`]): The Data
Samples. It usually includes information such as
`gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.
Returns:
dict: A dictionary of loss components.
"""
outs = self(x)
outputs = unpack_gt_instances(batch_data_samples)
(batch_gt_instances, batch_gt_instances_ignore,
batch_img_metas) = outputs
loss_inputs = outs + (batch_gt_instances, batch_img_metas,
batch_gt_instances_ignore)
losses = self.loss_by_feat(*loss_inputs)
return losses
@abstractmethod
def loss_by_feat(self, **kwargs) -> dict:
"""Calculate the loss based on the features extracted by the detection
head."""
pass
def loss_and_predict(
self,
x: Tuple[Tensor],
batch_data_samples: SampleList,
proposal_cfg: Optional[ConfigDict] = None
) -> Tuple[dict, InstanceList]:
"""Perform forward propagation of the head, then calculate loss and
predictions from the features and data samples.
Args:
x (tuple[Tensor]): Features from FPN.
batch_data_samples (list[:obj:`DetDataSample`]): Each item contains
the meta information of each image and corresponding
annotations.
proposal_cfg (ConfigDict, optional): Test / postprocessing
configuration, if None, test_cfg would be used.
Defaults to None.
Returns:
tuple: the return value is a tuple contains:
- losses: (dict[str, Tensor]): A dictionary of loss components.
- predictions (list[:obj:`InstanceData`]): Detection
results of each image after the post process.
"""
outputs = unpack_gt_instances(batch_data_samples)
(batch_gt_instances, batch_gt_instances_ignore,
batch_img_metas) = outputs
outs = self(x)
loss_inputs = outs + (batch_gt_instances, batch_img_metas,
batch_gt_instances_ignore)
losses = self.loss_by_feat(*loss_inputs)
predictions = self.predict_by_feat(
*outs, batch_img_metas=batch_img_metas, cfg=proposal_cfg)
return losses, predictions
def predict(self,
x: Tuple[Tensor],
batch_data_samples: SampleList,
rescale: bool = False) -> InstanceList:
"""Perform forward propagation of the detection head and predict
detection results on the features of the upstream network.
Args:
x (tuple[Tensor]): Multi-level features from the
upstream network, each is a 4D-tensor.
batch_data_samples (List[:obj:`DetDataSample`]): The Data
Samples. It usually includes information such as
`gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.
rescale (bool, optional): Whether to rescale the results.
Defaults to False.
Returns:
list[obj:`InstanceData`]: Detection results of each image
after the post process.
"""
batch_img_metas = [
data_samples.metainfo for data_samples in batch_data_samples
]
outs = self(x)
predictions = self.predict_by_feat(
*outs, batch_img_metas=batch_img_metas, rescale=rescale)
return predictions
def predict_by_feat(self,
cls_scores: List[Tensor],
bbox_preds: List[Tensor],
score_factors: Optional[List[Tensor]] = None,
batch_img_metas: Optional[List[dict]] = None,
cfg: Optional[ConfigDict] = None,
rescale: bool = False,
with_nms: bool = True) -> InstanceList:
"""Transform a batch of output features extracted from the head into
bbox results.
Note: When score_factors is not None, the cls_scores are
usually multiplied by it then obtain the real score used in NMS,
such as CenterNess in FCOS, IoU branch in ATSS.
Args:
cls_scores (list[Tensor]): Classification scores for all
scale levels, each is a 4D-tensor, has shape
(batch_size, num_priors * num_classes, H, W).
bbox_preds (list[Tensor]): Box energies / deltas for all
scale levels, each is a 4D-tensor, has shape
(batch_size, num_priors * 4, H, W).
score_factors (list[Tensor], optional): Score factor for
all scale level, each is a 4D-tensor, has shape
(batch_size, num_priors * 1, H, W). Defaults to None.
batch_img_metas (list[dict], Optional): Batch image meta info.
Defaults to None.
cfg (ConfigDict, optional): Test / postprocessing
configuration, if None, test_cfg would be used.
Defaults to None.
rescale (bool): If True, return boxes in original image space.
Defaults to False.
with_nms (bool): If True, do nms before return boxes.
Defaults to True.
Returns:
list[:obj:`InstanceData`]: Object detection results of each image
after the post process. Each item usually contains following keys.
- scores (Tensor): Classification scores, has a shape
(num_instance, )
- labels (Tensor): Labels of bboxes, has a shape
(num_instances, ).
- bboxes (Tensor): Has a shape (num_instances, 4),
the last dimension 4 arrange as (x1, y1, x2, y2).
"""
assert len(cls_scores) == len(bbox_preds)
if score_factors is None:
# e.g. Retina, FreeAnchor, Foveabox, etc.
with_score_factors = False
else:
# e.g. FCOS, PAA, ATSS, AutoAssign, etc.
with_score_factors = True
assert len(cls_scores) == len(score_factors)
num_levels = len(cls_scores)
featmap_sizes = [cls_scores[i].shape[-2:] for i in range(num_levels)]
mlvl_priors = self.prior_generator.grid_priors(
featmap_sizes,
dtype=cls_scores[0].dtype,
device=cls_scores[0].device)
result_list = []
for img_id in range(len(batch_img_metas)):
img_meta = batch_img_metas[img_id]
cls_score_list = select_single_mlvl(
cls_scores, img_id, detach=True)
bbox_pred_list = select_single_mlvl(
bbox_preds, img_id, detach=True)
if with_score_factors:
score_factor_list = select_single_mlvl(
score_factors, img_id, detach=True)
else:
score_factor_list = [None for _ in range(num_levels)]
results = self._predict_by_feat_single(
cls_score_list=cls_score_list,
bbox_pred_list=bbox_pred_list,
score_factor_list=score_factor_list,
mlvl_priors=mlvl_priors,
img_meta=img_meta,
cfg=cfg,
rescale=rescale,
with_nms=with_nms)
result_list.append(results)
return result_list
def _predict_by_feat_single(self,
cls_score_list: List[Tensor],
bbox_pred_list: List[Tensor],
score_factor_list: List[Tensor],
mlvl_priors: List[Tensor],
img_meta: dict,
cfg: ConfigDict,
rescale: bool = False,
with_nms: bool = True) -> InstanceData:
"""Transform a single image's features extracted from the head into
bbox results.
Args:
cls_score_list (list[Tensor]): Box scores from all scale
levels of a single image, each item has shape
(num_priors * num_classes, H, W).
bbox_pred_list (list[Tensor]): Box energies / deltas from
all scale levels of a single image, each item has shape
(num_priors * 4, H, W).
score_factor_list (list[Tensor]): Score factor from all scale
levels of a single image, each item has shape
(num_priors * 1, H, W).
mlvl_priors (list[Tensor]): Each element in the list is
the priors of a single level in feature pyramid. In all
anchor-based methods, it has shape (num_priors, 4). In
all anchor-free methods, it has shape (num_priors, 2)
when `with_stride=True`, otherwise it still has shape
(num_priors, 4).
img_meta (dict): Image meta info.
cfg (mmengine.Config): Test / postprocessing configuration,
if None, test_cfg would be used.
rescale (bool): If True, return boxes in original image space.
Defaults to False.
with_nms (bool): If True, do nms before return boxes.
Defaults to True.
Returns:
:obj:`InstanceData`: Detection results of each image
after the post process.
Each item usually contains following keys.
- scores (Tensor): Classification scores, has a shape
(num_instance, )
- labels (Tensor): Labels of bboxes, has a shape
(num_instances, ).
- bboxes (Tensor): Has a shape (num_instances, 4),
the last dimension 4 arrange as (x1, y1, x2, y2).
"""
if score_factor_list[0] is None:
# e.g. Retina, FreeAnchor, etc.
with_score_factors = False
else:
# e.g. FCOS, PAA, ATSS, etc.
with_score_factors = True
cfg = self.test_cfg if cfg is None else cfg
cfg = copy.deepcopy(cfg)
img_shape = img_meta['img_shape']
nms_pre = cfg.get('nms_pre', -1)
mlvl_bbox_preds = []
mlvl_valid_priors = []
mlvl_scores = []
mlvl_labels = []
if with_score_factors:
mlvl_score_factors = []
else:
mlvl_score_factors = None
for level_idx, (cls_score, bbox_pred, score_factor, priors) in \
enumerate(zip(cls_score_list, bbox_pred_list,
score_factor_list, mlvl_priors)):
assert cls_score.size()[-2:] == bbox_pred.size()[-2:]
dim = self.bbox_coder.encode_size
bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, dim)
if with_score_factors:
score_factor = score_factor.permute(1, 2,
0).reshape(-1).sigmoid()
cls_score = cls_score.permute(1, 2,
0).reshape(-1, self.cls_out_channels)
if self.use_sigmoid_cls:
scores = cls_score.sigmoid()
else:
# remind that we set FG labels to [0, num_class-1]
# since mmdet v2.0
# BG cat_id: num_class
scores = cls_score.softmax(-1)[:, :-1]
# After https://github.com/open-mmlab/mmdetection/pull/6268/,
# this operation keeps fewer bboxes under the same `nms_pre`.
# There is no difference in performance for most models. If you
# find a slight drop in performance, you can set a larger
# `nms_pre` than before.
score_thr = cfg.get('score_thr', 0)
results = filter_scores_and_topk(
scores, score_thr, nms_pre,
dict(bbox_pred=bbox_pred, priors=priors))
scores, labels, keep_idxs, filtered_results = results
bbox_pred = filtered_results['bbox_pred']
priors = filtered_results['priors']
if with_score_factors:
score_factor = score_factor[keep_idxs]
mlvl_bbox_preds.append(bbox_pred)
mlvl_valid_priors.append(priors)
mlvl_scores.append(scores)
mlvl_labels.append(labels)
if with_score_factors:
mlvl_score_factors.append(score_factor)
bbox_pred = torch.cat(mlvl_bbox_preds)
priors = cat_boxes(mlvl_valid_priors)
bboxes = self.bbox_coder.decode(priors, bbox_pred, max_shape=img_shape)
results = InstanceData()
results.bboxes = bboxes
results.scores = torch.cat(mlvl_scores)
results.labels = torch.cat(mlvl_labels)
if with_score_factors:
results.score_factors = torch.cat(mlvl_score_factors)
return self._bbox_post_process(
results=results,
cfg=cfg,
rescale=rescale,
with_nms=with_nms,
img_meta=img_meta)
def _bbox_post_process(self,
results: InstanceData,
cfg: ConfigDict,
rescale: bool = False,
with_nms: bool = True,
img_meta: Optional[dict] = None) -> InstanceData:
"""bbox post-processing method.
The boxes would be rescaled to the original image scale and do
the nms operation. Usually `with_nms` is False is used for aug test.
Args:
results (:obj:`InstaceData`): Detection instance results,
each item has shape (num_bboxes, ).
cfg (ConfigDict): Test / postprocessing configuration,
if None, test_cfg would be used.
rescale (bool): If True, return boxes in original image space.
Default to False.
with_nms (bool): If True, do nms before return boxes.
Default to True.
img_meta (dict, optional): Image meta info. Defaults to None.
Returns:
:obj:`InstanceData`: Detection results of each image
after the post process.
Each item usually contains following keys.
- scores (Tensor): Classification scores, has a shape
(num_instance, )
- labels (Tensor): Labels of bboxes, has a shape
(num_instances, ).
- bboxes (Tensor): Has a shape (num_instances, 4),
the last dimension 4 arrange as (x1, y1, x2, y2).
"""
if rescale:
assert img_meta.get('scale_factor') is not None
scale_factor = [1 / s for s in img_meta['scale_factor']]
results.bboxes = scale_boxes(results.bboxes, scale_factor)
if hasattr(results, 'score_factors'):
# TODO: Add sqrt operation in order to be consistent with
# the paper.
score_factors = results.pop('score_factors')
results.scores = results.scores * score_factors
# filter small size bboxes
if cfg.get('min_bbox_size', -1) >= 0:
w, h = get_box_wh(results.bboxes)
valid_mask = (w > cfg.min_bbox_size) & (h > cfg.min_bbox_size)
if not valid_mask.all():
results = results[valid_mask]
# TODO: deal with `with_nms` and `nms_cfg=None` in test_cfg
if with_nms and results.bboxes.numel() > 0:
bboxes = get_box_tensor(results.bboxes)
det_bboxes, keep_idxs = batched_nms(bboxes, results.scores,
results.labels, cfg.nms)
results = results[keep_idxs]
# some nms would reweight the score, such as softnms
results.scores = det_bboxes[:, -1]
results = results[:cfg.max_per_img]
return results
def aug_test(self,
aug_batch_feats,
aug_batch_img_metas,
rescale=False,
with_ori_nms=False,
**kwargs):
"""Test function with test time augmentation.
Args:
aug_batch_feats (list[tuple[Tensor]]): The outer list
indicates test-time augmentations and inner tuple
indicate the multi-level feats from
FPN, each Tensor should have a shape (B, C, H, W),
aug_batch_img_metas (list[list[dict]]): Meta information
of images under the different test-time augs
(multiscale, flip, etc.). The outer list indicate
the
rescale (bool, optional): Whether to rescale the results.
Defaults to False.
with_ori_nms (bool): Whether execute the nms in original head.
Defaults to False. It will be `True` when the head is
adopted as `rpn_head`.
Returns:
list(obj:`InstanceData`): Detection results of the
input images. Each item usually contains\
following keys.
- scores (Tensor): Classification scores, has a shape
(num_instance,)
- labels (Tensor): Labels of bboxes, has a shape
(num_instances,).
- bboxes (Tensor): Has a shape (num_instances, 4),
the last dimension 4 arrange as (x1, y1, x2, y2).
"""
# TODO: remove this for detr and deformdetr
sig_of_get_results = signature(self.get_results)
get_results_args = [
p.name for p in sig_of_get_results.parameters.values()
]
get_results_single_sig = signature(self._get_results_single)
get_results_single_sig_args = [
p.name for p in get_results_single_sig.parameters.values()
]
assert ('with_nms' in get_results_args) and \
('with_nms' in get_results_single_sig_args), \
f'{self.__class__.__name__}' \
'does not support test-time augmentation '
num_imgs = len(aug_batch_img_metas[0])
aug_batch_results = []
for x, img_metas in zip(aug_batch_feats, aug_batch_img_metas):
outs = self.forward(x)
batch_instance_results = self.get_results(
*outs,
img_metas=img_metas,
cfg=self.test_cfg,
rescale=False,
with_nms=with_ori_nms,
**kwargs)
aug_batch_results.append(batch_instance_results)
# after merging, bboxes will be rescaled to the original image
batch_results = merge_aug_results(aug_batch_results,
aug_batch_img_metas)
final_results = []
for img_id in range(num_imgs):
results = batch_results[img_id]
det_bboxes, keep_idxs = batched_nms(results.bboxes, results.scores,
results.labels,
self.test_cfg.nms)
results = results[keep_idxs]
# some nms operation may reweight the score such as softnms
results.scores = det_bboxes[:, -1]
results = results[:self.test_cfg.max_per_img]
if rescale:
# all results have been mapped to the original scale
# in `merge_aug_results`, so just pass
pass
else:
# map to the first aug image scale
scale_factor = results.bboxes.new_tensor(
aug_batch_img_metas[0][img_id]['scale_factor'])
results.bboxes = \
results.bboxes * scale_factor
final_results.append(results)
return final_results