KyanChen's picture
Upload 787 files
3e06e1c
raw
history blame
13.6 kB
# Copyright (c) OpenMMLab. All rights reserved.
import warnings
import numpy as np
import torch.nn as nn
from mmcv.cnn import build_conv_layer, build_norm_layer
from mmdet.registry import MODELS
from .resnet import ResNet
from .resnext import Bottleneck
@MODELS.register_module()
class RegNet(ResNet):
"""RegNet backbone.
More details can be found in `paper <https://arxiv.org/abs/2003.13678>`_ .
Args:
arch (dict): The parameter of RegNets.
- w0 (int): initial width
- wa (float): slope of width
- wm (float): quantization parameter to quantize the width
- depth (int): depth of the backbone
- group_w (int): width of group
- bot_mul (float): bottleneck ratio, i.e. expansion of bottleneck.
strides (Sequence[int]): Strides of the first block of each stage.
base_channels (int): Base channels after stem layer.
in_channels (int): Number of input image channels. Default: 3.
dilations (Sequence[int]): Dilation of each stage.
out_indices (Sequence[int]): Output from which stages.
style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two
layer is the 3x3 conv layer, otherwise the stride-two layer is
the first 1x1 conv layer.
frozen_stages (int): Stages to be frozen (all param fixed). -1 means
not freezing any parameters.
norm_cfg (dict): dictionary to construct and config norm layer.
norm_eval (bool): Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only.
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed.
zero_init_residual (bool): whether to use zero init for last norm layer
in resblocks to let them behave as identity.
pretrained (str, optional): model pretrained path. Default: None
init_cfg (dict or list[dict], optional): Initialization config dict.
Default: None
Example:
>>> from mmdet.models import RegNet
>>> import torch
>>> self = RegNet(
arch=dict(
w0=88,
wa=26.31,
wm=2.25,
group_w=48,
depth=25,
bot_mul=1.0))
>>> self.eval()
>>> inputs = torch.rand(1, 3, 32, 32)
>>> level_outputs = self.forward(inputs)
>>> for level_out in level_outputs:
... print(tuple(level_out.shape))
(1, 96, 8, 8)
(1, 192, 4, 4)
(1, 432, 2, 2)
(1, 1008, 1, 1)
"""
arch_settings = {
'regnetx_400mf':
dict(w0=24, wa=24.48, wm=2.54, group_w=16, depth=22, bot_mul=1.0),
'regnetx_800mf':
dict(w0=56, wa=35.73, wm=2.28, group_w=16, depth=16, bot_mul=1.0),
'regnetx_1.6gf':
dict(w0=80, wa=34.01, wm=2.25, group_w=24, depth=18, bot_mul=1.0),
'regnetx_3.2gf':
dict(w0=88, wa=26.31, wm=2.25, group_w=48, depth=25, bot_mul=1.0),
'regnetx_4.0gf':
dict(w0=96, wa=38.65, wm=2.43, group_w=40, depth=23, bot_mul=1.0),
'regnetx_6.4gf':
dict(w0=184, wa=60.83, wm=2.07, group_w=56, depth=17, bot_mul=1.0),
'regnetx_8.0gf':
dict(w0=80, wa=49.56, wm=2.88, group_w=120, depth=23, bot_mul=1.0),
'regnetx_12gf':
dict(w0=168, wa=73.36, wm=2.37, group_w=112, depth=19, bot_mul=1.0),
}
def __init__(self,
arch,
in_channels=3,
stem_channels=32,
base_channels=32,
strides=(2, 2, 2, 2),
dilations=(1, 1, 1, 1),
out_indices=(0, 1, 2, 3),
style='pytorch',
deep_stem=False,
avg_down=False,
frozen_stages=-1,
conv_cfg=None,
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=True,
dcn=None,
stage_with_dcn=(False, False, False, False),
plugins=None,
with_cp=False,
zero_init_residual=True,
pretrained=None,
init_cfg=None):
super(ResNet, self).__init__(init_cfg)
# Generate RegNet parameters first
if isinstance(arch, str):
assert arch in self.arch_settings, \
f'"arch": "{arch}" is not one of the' \
' arch_settings'
arch = self.arch_settings[arch]
elif not isinstance(arch, dict):
raise ValueError('Expect "arch" to be either a string '
f'or a dict, got {type(arch)}')
widths, num_stages = self.generate_regnet(
arch['w0'],
arch['wa'],
arch['wm'],
arch['depth'],
)
# Convert to per stage format
stage_widths, stage_blocks = self.get_stages_from_blocks(widths)
# Generate group widths and bot muls
group_widths = [arch['group_w'] for _ in range(num_stages)]
self.bottleneck_ratio = [arch['bot_mul'] for _ in range(num_stages)]
# Adjust the compatibility of stage_widths and group_widths
stage_widths, group_widths = self.adjust_width_group(
stage_widths, self.bottleneck_ratio, group_widths)
# Group params by stage
self.stage_widths = stage_widths
self.group_widths = group_widths
self.depth = sum(stage_blocks)
self.stem_channels = stem_channels
self.base_channels = base_channels
self.num_stages = num_stages
assert num_stages >= 1 and num_stages <= 4
self.strides = strides
self.dilations = dilations
assert len(strides) == len(dilations) == num_stages
self.out_indices = out_indices
assert max(out_indices) < num_stages
self.style = style
self.deep_stem = deep_stem
self.avg_down = avg_down
self.frozen_stages = frozen_stages
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.with_cp = with_cp
self.norm_eval = norm_eval
self.dcn = dcn
self.stage_with_dcn = stage_with_dcn
if dcn is not None:
assert len(stage_with_dcn) == num_stages
self.plugins = plugins
self.zero_init_residual = zero_init_residual
self.block = Bottleneck
expansion_bak = self.block.expansion
self.block.expansion = 1
self.stage_blocks = stage_blocks[:num_stages]
self._make_stem_layer(in_channels, stem_channels)
block_init_cfg = None
assert not (init_cfg and pretrained), \
'init_cfg and pretrained cannot be specified at the same time'
if isinstance(pretrained, str):
warnings.warn('DeprecationWarning: pretrained is deprecated, '
'please use "init_cfg" instead')
self.init_cfg = dict(type='Pretrained', checkpoint=pretrained)
elif pretrained is None:
if init_cfg is None:
self.init_cfg = [
dict(type='Kaiming', layer='Conv2d'),
dict(
type='Constant',
val=1,
layer=['_BatchNorm', 'GroupNorm'])
]
if self.zero_init_residual:
block_init_cfg = dict(
type='Constant', val=0, override=dict(name='norm3'))
else:
raise TypeError('pretrained must be a str or None')
self.inplanes = stem_channels
self.res_layers = []
for i, num_blocks in enumerate(self.stage_blocks):
stride = self.strides[i]
dilation = self.dilations[i]
group_width = self.group_widths[i]
width = int(round(self.stage_widths[i] * self.bottleneck_ratio[i]))
stage_groups = width // group_width
dcn = self.dcn if self.stage_with_dcn[i] else None
if self.plugins is not None:
stage_plugins = self.make_stage_plugins(self.plugins, i)
else:
stage_plugins = None
res_layer = self.make_res_layer(
block=self.block,
inplanes=self.inplanes,
planes=self.stage_widths[i],
num_blocks=num_blocks,
stride=stride,
dilation=dilation,
style=self.style,
avg_down=self.avg_down,
with_cp=self.with_cp,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
dcn=dcn,
plugins=stage_plugins,
groups=stage_groups,
base_width=group_width,
base_channels=self.stage_widths[i],
init_cfg=block_init_cfg)
self.inplanes = self.stage_widths[i]
layer_name = f'layer{i + 1}'
self.add_module(layer_name, res_layer)
self.res_layers.append(layer_name)
self._freeze_stages()
self.feat_dim = stage_widths[-1]
self.block.expansion = expansion_bak
def _make_stem_layer(self, in_channels, base_channels):
self.conv1 = build_conv_layer(
self.conv_cfg,
in_channels,
base_channels,
kernel_size=3,
stride=2,
padding=1,
bias=False)
self.norm1_name, norm1 = build_norm_layer(
self.norm_cfg, base_channels, postfix=1)
self.add_module(self.norm1_name, norm1)
self.relu = nn.ReLU(inplace=True)
def generate_regnet(self,
initial_width,
width_slope,
width_parameter,
depth,
divisor=8):
"""Generates per block width from RegNet parameters.
Args:
initial_width ([int]): Initial width of the backbone
width_slope ([float]): Slope of the quantized linear function
width_parameter ([int]): Parameter used to quantize the width.
depth ([int]): Depth of the backbone.
divisor (int, optional): The divisor of channels. Defaults to 8.
Returns:
list, int: return a list of widths of each stage and the number \
of stages
"""
assert width_slope >= 0
assert initial_width > 0
assert width_parameter > 1
assert initial_width % divisor == 0
widths_cont = np.arange(depth) * width_slope + initial_width
ks = np.round(
np.log(widths_cont / initial_width) / np.log(width_parameter))
widths = initial_width * np.power(width_parameter, ks)
widths = np.round(np.divide(widths, divisor)) * divisor
num_stages = len(np.unique(widths))
widths, widths_cont = widths.astype(int).tolist(), widths_cont.tolist()
return widths, num_stages
@staticmethod
def quantize_float(number, divisor):
"""Converts a float to closest non-zero int divisible by divisor.
Args:
number (int): Original number to be quantized.
divisor (int): Divisor used to quantize the number.
Returns:
int: quantized number that is divisible by devisor.
"""
return int(round(number / divisor) * divisor)
def adjust_width_group(self, widths, bottleneck_ratio, groups):
"""Adjusts the compatibility of widths and groups.
Args:
widths (list[int]): Width of each stage.
bottleneck_ratio (float): Bottleneck ratio.
groups (int): number of groups in each stage
Returns:
tuple(list): The adjusted widths and groups of each stage.
"""
bottleneck_width = [
int(w * b) for w, b in zip(widths, bottleneck_ratio)
]
groups = [min(g, w_bot) for g, w_bot in zip(groups, bottleneck_width)]
bottleneck_width = [
self.quantize_float(w_bot, g)
for w_bot, g in zip(bottleneck_width, groups)
]
widths = [
int(w_bot / b)
for w_bot, b in zip(bottleneck_width, bottleneck_ratio)
]
return widths, groups
def get_stages_from_blocks(self, widths):
"""Gets widths/stage_blocks of network at each stage.
Args:
widths (list[int]): Width in each stage.
Returns:
tuple(list): width and depth of each stage
"""
width_diff = [
width != width_prev
for width, width_prev in zip(widths + [0], [0] + widths)
]
stage_widths = [
width for width, diff in zip(widths, width_diff[:-1]) if diff
]
stage_blocks = np.diff([
depth for depth, diff in zip(range(len(width_diff)), width_diff)
if diff
]).tolist()
return stage_widths, stage_blocks
def forward(self, x):
"""Forward function."""
x = self.conv1(x)
x = self.norm1(x)
x = self.relu(x)
outs = []
for i, layer_name in enumerate(self.res_layers):
res_layer = getattr(self, layer_name)
x = res_layer(x)
if i in self.out_indices:
outs.append(x)
return tuple(outs)