RSPrompter / mmdet /models /backbones /detectors_resnext.py
KyanChen's picture
Upload 787 files
3e06e1c
raw
history blame
3.92 kB
# Copyright (c) OpenMMLab. All rights reserved.
import math
from mmcv.cnn import build_conv_layer, build_norm_layer
from mmdet.registry import MODELS
from .detectors_resnet import Bottleneck as _Bottleneck
from .detectors_resnet import DetectoRS_ResNet
class Bottleneck(_Bottleneck):
expansion = 4
def __init__(self,
inplanes,
planes,
groups=1,
base_width=4,
base_channels=64,
**kwargs):
"""Bottleneck block for ResNeXt.
If style is "pytorch", the stride-two layer is the 3x3 conv layer, if
it is "caffe", the stride-two layer is the first 1x1 conv layer.
"""
super(Bottleneck, self).__init__(inplanes, planes, **kwargs)
if groups == 1:
width = self.planes
else:
width = math.floor(self.planes *
(base_width / base_channels)) * groups
self.norm1_name, norm1 = build_norm_layer(
self.norm_cfg, width, postfix=1)
self.norm2_name, norm2 = build_norm_layer(
self.norm_cfg, width, postfix=2)
self.norm3_name, norm3 = build_norm_layer(
self.norm_cfg, self.planes * self.expansion, postfix=3)
self.conv1 = build_conv_layer(
self.conv_cfg,
self.inplanes,
width,
kernel_size=1,
stride=self.conv1_stride,
bias=False)
self.add_module(self.norm1_name, norm1)
fallback_on_stride = False
self.with_modulated_dcn = False
if self.with_dcn:
fallback_on_stride = self.dcn.pop('fallback_on_stride', False)
if self.with_sac:
self.conv2 = build_conv_layer(
self.sac,
width,
width,
kernel_size=3,
stride=self.conv2_stride,
padding=self.dilation,
dilation=self.dilation,
groups=groups,
bias=False)
elif not self.with_dcn or fallback_on_stride:
self.conv2 = build_conv_layer(
self.conv_cfg,
width,
width,
kernel_size=3,
stride=self.conv2_stride,
padding=self.dilation,
dilation=self.dilation,
groups=groups,
bias=False)
else:
assert self.conv_cfg is None, 'conv_cfg must be None for DCN'
self.conv2 = build_conv_layer(
self.dcn,
width,
width,
kernel_size=3,
stride=self.conv2_stride,
padding=self.dilation,
dilation=self.dilation,
groups=groups,
bias=False)
self.add_module(self.norm2_name, norm2)
self.conv3 = build_conv_layer(
self.conv_cfg,
width,
self.planes * self.expansion,
kernel_size=1,
bias=False)
self.add_module(self.norm3_name, norm3)
@MODELS.register_module()
class DetectoRS_ResNeXt(DetectoRS_ResNet):
"""ResNeXt backbone for DetectoRS.
Args:
groups (int): The number of groups in ResNeXt.
base_width (int): The base width of ResNeXt.
"""
arch_settings = {
50: (Bottleneck, (3, 4, 6, 3)),
101: (Bottleneck, (3, 4, 23, 3)),
152: (Bottleneck, (3, 8, 36, 3))
}
def __init__(self, groups=1, base_width=4, **kwargs):
self.groups = groups
self.base_width = base_width
super(DetectoRS_ResNeXt, self).__init__(**kwargs)
def make_res_layer(self, **kwargs):
return super().make_res_layer(
groups=self.groups,
base_width=self.base_width,
base_channels=self.base_channels,
**kwargs)