RSPrompter / mmdet /evaluation /functional /cityscapes_utils.py
KyanChen's picture
Upload 787 files
3e06e1c
raw
history blame
11.7 kB
# Copyright (c) OpenMMLab. All rights reserved.
# Copyright (c) https://github.com/mcordts/cityscapesScripts
# A wrapper of `cityscapesscripts` which supports loading groundtruth
# image from `backend_args`.
import json
import os
import sys
from pathlib import Path
from typing import Optional, Union
import mmcv
import numpy as np
from mmengine.fileio import get
try:
import cityscapesscripts.evaluation.evalInstanceLevelSemanticLabeling as CSEval # noqa: E501
from cityscapesscripts.evaluation.evalInstanceLevelSemanticLabeling import \
CArgs # noqa: E501
from cityscapesscripts.evaluation.instance import Instance
from cityscapesscripts.helpers.csHelpers import (id2label, labels,
writeDict2JSON)
HAS_CITYSCAPESAPI = True
except ImportError:
CArgs = object
HAS_CITYSCAPESAPI = False
def evaluateImgLists(prediction_list: list,
groundtruth_list: list,
args: CArgs,
backend_args: Optional[dict] = None,
dump_matches: bool = False) -> dict:
"""A wrapper of obj:``cityscapesscripts.evaluation.
evalInstanceLevelSemanticLabeling.evaluateImgLists``. Support loading
groundtruth image from file backend.
Args:
prediction_list (list): A list of prediction txt file.
groundtruth_list (list): A list of groundtruth image file.
args (CArgs): A global object setting in
obj:``cityscapesscripts.evaluation.
evalInstanceLevelSemanticLabeling``
backend_args (dict, optional): Arguments to instantiate the
preifx of uri corresponding backend. Defaults to None.
dump_matches (bool): whether dump matches.json. Defaults to False.
Returns:
dict: The computed metric.
"""
if not HAS_CITYSCAPESAPI:
raise RuntimeError('Failed to import `cityscapesscripts`.'
'Please try to install official '
'cityscapesscripts by '
'"pip install cityscapesscripts"')
# determine labels of interest
CSEval.setInstanceLabels(args)
# get dictionary of all ground truth instances
gt_instances = getGtInstances(
groundtruth_list, args, backend_args=backend_args)
# match predictions and ground truth
matches = matchGtWithPreds(prediction_list, groundtruth_list, gt_instances,
args, backend_args)
if dump_matches:
CSEval.writeDict2JSON(matches, 'matches.json')
# evaluate matches
apScores = CSEval.evaluateMatches(matches, args)
# averages
avgDict = CSEval.computeAverages(apScores, args)
# result dict
resDict = CSEval.prepareJSONDataForResults(avgDict, apScores, args)
if args.JSONOutput:
# create output folder if necessary
path = os.path.dirname(args.exportFile)
CSEval.ensurePath(path)
# Write APs to JSON
CSEval.writeDict2JSON(resDict, args.exportFile)
CSEval.printResults(avgDict, args)
return resDict
def matchGtWithPreds(prediction_list: list,
groundtruth_list: list,
gt_instances: dict,
args: CArgs,
backend_args=None):
"""A wrapper of obj:``cityscapesscripts.evaluation.
evalInstanceLevelSemanticLabeling.matchGtWithPreds``. Support loading
groundtruth image from file backend.
Args:
prediction_list (list): A list of prediction txt file.
groundtruth_list (list): A list of groundtruth image file.
gt_instances (dict): Groundtruth dict.
args (CArgs): A global object setting in
obj:``cityscapesscripts.evaluation.
evalInstanceLevelSemanticLabeling``
backend_args (dict, optional): Arguments to instantiate the
preifx of uri corresponding backend. Defaults to None.
Returns:
dict: The processed prediction and groundtruth result.
"""
if not HAS_CITYSCAPESAPI:
raise RuntimeError('Failed to import `cityscapesscripts`.'
'Please try to install official '
'cityscapesscripts by '
'"pip install cityscapesscripts"')
matches: dict = dict()
if not args.quiet:
print(f'Matching {len(prediction_list)} pairs of images...')
count = 0
for (pred, gt) in zip(prediction_list, groundtruth_list):
# Read input files
gt_image = readGTImage(gt, backend_args)
pred_info = readPredInfo(pred)
# Get and filter ground truth instances
unfiltered_instances = gt_instances[gt]
cur_gt_instances_orig = CSEval.filterGtInstances(
unfiltered_instances, args)
# Try to assign all predictions
(cur_gt_instances,
cur_pred_instances) = CSEval.assignGt2Preds(cur_gt_instances_orig,
gt_image, pred_info, args)
# append to global dict
matches[gt] = {}
matches[gt]['groundTruth'] = cur_gt_instances
matches[gt]['prediction'] = cur_pred_instances
count += 1
if not args.quiet:
print(f'\rImages Processed: {count}', end=' ')
sys.stdout.flush()
if not args.quiet:
print('')
return matches
def readGTImage(image_file: Union[str, Path],
backend_args: Optional[dict] = None) -> np.ndarray:
"""Read an image from path.
Same as obj:``cityscapesscripts.evaluation.
evalInstanceLevelSemanticLabeling.readGTImage``, but support loading
groundtruth image from file backend.
Args:
image_file (str or Path): Either a str or pathlib.Path.
backend_args (dict, optional): Instantiates the corresponding file
backend. It may contain `backend` key to specify the file
backend. If it contains, the file backend corresponding to this
value will be used and initialized with the remaining values,
otherwise the corresponding file backend will be selected
based on the prefix of the file path. Defaults to None.
Returns:
np.ndarray: The groundtruth image.
"""
img_bytes = get(image_file, backend_args=backend_args)
img = mmcv.imfrombytes(img_bytes, flag='unchanged', backend='pillow')
return img
def readPredInfo(prediction_file: str) -> dict:
"""A wrapper of obj:``cityscapesscripts.evaluation.
evalInstanceLevelSemanticLabeling.readPredInfo``.
Args:
prediction_file (str): The prediction txt file.
Returns:
dict: The processed prediction results.
"""
if not HAS_CITYSCAPESAPI:
raise RuntimeError('Failed to import `cityscapesscripts`.'
'Please try to install official '
'cityscapesscripts by '
'"pip install cityscapesscripts"')
printError = CSEval.printError
predInfo = {}
if (not os.path.isfile(prediction_file)):
printError(f"Infofile '{prediction_file}' "
'for the predictions not found.')
with open(prediction_file) as f:
for line in f:
splittedLine = line.split(' ')
if len(splittedLine) != 3:
printError('Invalid prediction file. Expected content: '
'relPathPrediction1 labelIDPrediction1 '
'confidencePrediction1')
if os.path.isabs(splittedLine[0]):
printError('Invalid prediction file. First entry in each '
'line must be a relative path.')
filename = os.path.join(
os.path.dirname(prediction_file), splittedLine[0])
imageInfo = {}
imageInfo['labelID'] = int(float(splittedLine[1]))
imageInfo['conf'] = float(splittedLine[2]) # type: ignore
predInfo[filename] = imageInfo
return predInfo
def getGtInstances(groundtruth_list: list,
args: CArgs,
backend_args: Optional[dict] = None) -> dict:
"""A wrapper of obj:``cityscapesscripts.evaluation.
evalInstanceLevelSemanticLabeling.getGtInstances``. Support loading
groundtruth image from file backend.
Args:
groundtruth_list (list): A list of groundtruth image file.
args (CArgs): A global object setting in
obj:``cityscapesscripts.evaluation.
evalInstanceLevelSemanticLabeling``
backend_args (dict, optional): Arguments to instantiate the
preifx of uri corresponding backend. Defaults to None.
Returns:
dict: The computed metric.
"""
if not HAS_CITYSCAPESAPI:
raise RuntimeError('Failed to import `cityscapesscripts`.'
'Please try to install official '
'cityscapesscripts by '
'"pip install cityscapesscripts"')
# if there is a global statistics json, then load it
if (os.path.isfile(args.gtInstancesFile)):
if not args.quiet:
print('Loading ground truth instances from JSON.')
with open(args.gtInstancesFile) as json_file:
gt_instances = json.load(json_file)
# otherwise create it
else:
if (not args.quiet):
print('Creating ground truth instances from png files.')
gt_instances = instances2dict(
groundtruth_list, args, backend_args=backend_args)
writeDict2JSON(gt_instances, args.gtInstancesFile)
return gt_instances
def instances2dict(image_list: list,
args: CArgs,
backend_args: Optional[dict] = None) -> dict:
"""A wrapper of obj:``cityscapesscripts.evaluation.
evalInstanceLevelSemanticLabeling.instances2dict``. Support loading
groundtruth image from file backend.
Args:
image_list (list): A list of image file.
args (CArgs): A global object setting in
obj:``cityscapesscripts.evaluation.
evalInstanceLevelSemanticLabeling``
backend_args (dict, optional): Arguments to instantiate the
preifx of uri corresponding backend. Defaults to None.
Returns:
dict: The processed groundtruth results.
"""
if not HAS_CITYSCAPESAPI:
raise RuntimeError('Failed to import `cityscapesscripts`.'
'Please try to install official '
'cityscapesscripts by '
'"pip install cityscapesscripts"')
imgCount = 0
instanceDict = {}
if not isinstance(image_list, list):
image_list = [image_list]
if not args.quiet:
print(f'Processing {len(image_list)} images...')
for image_name in image_list:
# Load image
img_bytes = get(image_name, backend_args=backend_args)
imgNp = mmcv.imfrombytes(img_bytes, flag='unchanged', backend='pillow')
# Initialize label categories
instances: dict = {}
for label in labels:
instances[label.name] = []
# Loop through all instance ids in instance image
for instanceId in np.unique(imgNp):
instanceObj = Instance(imgNp, instanceId)
instances[id2label[instanceObj.labelID].name].append(
instanceObj.toDict())
instanceDict[image_name] = instances
imgCount += 1
if not args.quiet:
print(f'\rImages Processed: {imgCount}', end=' ')
sys.stdout.flush()
return instanceDict