RSPrompter / mmdet /datasets /dataset_wrappers.py
KyanChen's picture
Upload 787 files
3e06e1c
raw
history blame
6.47 kB
# Copyright (c) OpenMMLab. All rights reserved.
import collections
import copy
from typing import Sequence, Union
from mmengine.dataset import BaseDataset, force_full_init
from mmdet.registry import DATASETS, TRANSFORMS
@DATASETS.register_module()
class MultiImageMixDataset:
"""A wrapper of multiple images mixed dataset.
Suitable for training on multiple images mixed data augmentation like
mosaic and mixup. For the augmentation pipeline of mixed image data,
the `get_indexes` method needs to be provided to obtain the image
indexes, and you can set `skip_flags` to change the pipeline running
process. At the same time, we provide the `dynamic_scale` parameter
to dynamically change the output image size.
Args:
dataset (:obj:`CustomDataset`): The dataset to be mixed.
pipeline (Sequence[dict]): Sequence of transform object or
config dict to be composed.
dynamic_scale (tuple[int], optional): The image scale can be changed
dynamically. Default to None. It is deprecated.
skip_type_keys (list[str], optional): Sequence of type string to
be skip pipeline. Default to None.
max_refetch (int): The maximum number of retry iterations for getting
valid results from the pipeline. If the number of iterations is
greater than `max_refetch`, but results is still None, then the
iteration is terminated and raise the error. Default: 15.
"""
def __init__(self,
dataset: Union[BaseDataset, dict],
pipeline: Sequence[str],
skip_type_keys: Union[Sequence[str], None] = None,
max_refetch: int = 15,
lazy_init: bool = False) -> None:
assert isinstance(pipeline, collections.abc.Sequence)
if skip_type_keys is not None:
assert all([
isinstance(skip_type_key, str)
for skip_type_key in skip_type_keys
])
self._skip_type_keys = skip_type_keys
self.pipeline = []
self.pipeline_types = []
for transform in pipeline:
if isinstance(transform, dict):
self.pipeline_types.append(transform['type'])
transform = TRANSFORMS.build(transform)
self.pipeline.append(transform)
else:
raise TypeError('pipeline must be a dict')
self.dataset: BaseDataset
if isinstance(dataset, dict):
self.dataset = DATASETS.build(dataset)
elif isinstance(dataset, BaseDataset):
self.dataset = dataset
else:
raise TypeError(
'elements in datasets sequence should be config or '
f'`BaseDataset` instance, but got {type(dataset)}')
self._metainfo = self.dataset.metainfo
if hasattr(self.dataset, 'flag'):
self.flag = self.dataset.flag
self.num_samples = len(self.dataset)
self.max_refetch = max_refetch
self._fully_initialized = False
if not lazy_init:
self.full_init()
@property
def metainfo(self) -> dict:
"""Get the meta information of the multi-image-mixed dataset.
Returns:
dict: The meta information of multi-image-mixed dataset.
"""
return copy.deepcopy(self._metainfo)
def full_init(self):
"""Loop to ``full_init`` each dataset."""
if self._fully_initialized:
return
self.dataset.full_init()
self._ori_len = len(self.dataset)
self._fully_initialized = True
@force_full_init
def get_data_info(self, idx: int) -> dict:
"""Get annotation by index.
Args:
idx (int): Global index of ``ConcatDataset``.
Returns:
dict: The idx-th annotation of the datasets.
"""
return self.dataset.get_data_info(idx)
@force_full_init
def __len__(self):
return self.num_samples
def __getitem__(self, idx):
results = copy.deepcopy(self.dataset[idx])
for (transform, transform_type) in zip(self.pipeline,
self.pipeline_types):
if self._skip_type_keys is not None and \
transform_type in self._skip_type_keys:
continue
if hasattr(transform, 'get_indexes'):
for i in range(self.max_refetch):
# Make sure the results passed the loading pipeline
# of the original dataset is not None.
indexes = transform.get_indexes(self.dataset)
if not isinstance(indexes, collections.abc.Sequence):
indexes = [indexes]
mix_results = [
copy.deepcopy(self.dataset[index]) for index in indexes
]
if None not in mix_results:
results['mix_results'] = mix_results
break
else:
raise RuntimeError(
'The loading pipeline of the original dataset'
' always return None. Please check the correctness '
'of the dataset and its pipeline.')
for i in range(self.max_refetch):
# To confirm the results passed the training pipeline
# of the wrapper is not None.
updated_results = transform(copy.deepcopy(results))
if updated_results is not None:
results = updated_results
break
else:
raise RuntimeError(
'The training pipeline of the dataset wrapper'
' always return None.Please check the correctness '
'of the dataset and its pipeline.')
if 'mix_results' in results:
results.pop('mix_results')
return results
def update_skip_type_keys(self, skip_type_keys):
"""Update skip_type_keys. It is called by an external hook.
Args:
skip_type_keys (list[str], optional): Sequence of type
string to be skip pipeline.
"""
assert all([
isinstance(skip_type_key, str) for skip_type_key in skip_type_keys
])
self._skip_type_keys = skip_type_keys