KyanChen's picture
Upload 303 files
4d0eb62
raw
history blame
11.3 kB
# Copyright (c) OpenMMLab. All rights reserved.
from collections import defaultdict
from collections.abc import Sequence
import cv2
import numpy as np
import torch
import torchvision.transforms.functional as F
from mmcv.transforms import BaseTransform
from mmengine.utils import is_str
from PIL import Image
from mmpretrain.registry import TRANSFORMS
from mmpretrain.structures import DataSample, MultiTaskDataSample
def to_tensor(data):
"""Convert objects of various python types to :obj:`torch.Tensor`.
Supported types are: :class:`numpy.ndarray`, :class:`torch.Tensor`,
:class:`Sequence`, :class:`int` and :class:`float`.
"""
if isinstance(data, torch.Tensor):
return data
elif isinstance(data, np.ndarray):
return torch.from_numpy(data)
elif isinstance(data, Sequence) and not is_str(data):
return torch.tensor(data)
elif isinstance(data, int):
return torch.LongTensor([data])
elif isinstance(data, float):
return torch.FloatTensor([data])
else:
raise TypeError(
f'Type {type(data)} cannot be converted to tensor.'
'Supported types are: `numpy.ndarray`, `torch.Tensor`, '
'`Sequence`, `int` and `float`')
@TRANSFORMS.register_module()
class PackInputs(BaseTransform):
"""Pack the inputs data.
**Required Keys:**
- ``input_key``
- ``*algorithm_keys``
- ``*meta_keys``
**Deleted Keys:**
All other keys in the dict.
**Added Keys:**
- inputs (:obj:`torch.Tensor`): The forward data of models.
- data_samples (:obj:`~mmpretrain.structures.DataSample`): The
annotation info of the sample.
Args:
input_key (str): The key of element to feed into the model forwarding.
Defaults to 'img'.
algorithm_keys (Sequence[str]): The keys of custom elements to be used
in the algorithm. Defaults to an empty tuple.
meta_keys (Sequence[str]): The keys of meta information to be saved in
the data sample. Defaults to :attr:`PackInputs.DEFAULT_META_KEYS`.
.. admonition:: Default algorithm keys
Besides the specified ``algorithm_keys``, we will set some default keys
into the output data sample and do some formatting. Therefore, you
don't need to set these keys in the ``algorithm_keys``.
- ``gt_label``: The ground-truth label. The value will be converted
into a 1-D tensor.
- ``gt_score``: The ground-truth score. The value will be converted
into a 1-D tensor.
- ``mask``: The mask for some self-supervise tasks. The value will
be converted into a tensor.
.. admonition:: Default meta keys
- ``sample_idx``: The id of the image sample.
- ``img_path``: The path to the image file.
- ``ori_shape``: The original shape of the image as a tuple (H, W).
- ``img_shape``: The shape of the image after the pipeline as a
tuple (H, W).
- ``scale_factor``: The scale factor between the resized image and
the original image.
- ``flip``: A boolean indicating if image flip transform was used.
- ``flip_direction``: The flipping direction.
"""
DEFAULT_META_KEYS = ('sample_idx', 'img_path', 'ori_shape', 'img_shape',
'scale_factor', 'flip', 'flip_direction')
def __init__(self,
input_key='img',
algorithm_keys=(),
meta_keys=DEFAULT_META_KEYS):
self.input_key = input_key
self.algorithm_keys = algorithm_keys
self.meta_keys = meta_keys
@staticmethod
def format_input(input_):
if isinstance(input_, list):
return [PackInputs.format_input(item) for item in input_]
elif isinstance(input_, np.ndarray):
if input_.ndim == 2: # For grayscale image.
input_ = np.expand_dims(input_, -1)
if input_.ndim == 3 and not input_.flags.c_contiguous:
input_ = np.ascontiguousarray(input_.transpose(2, 0, 1))
input_ = to_tensor(input_)
elif input_.ndim == 3:
# convert to tensor first to accelerate, see
# https://github.com/open-mmlab/mmdetection/pull/9533
input_ = to_tensor(input_).permute(2, 0, 1).contiguous()
else:
# convert input with other shape to tensor without permute,
# like video input (num_crops, C, T, H, W).
input_ = to_tensor(input_)
elif isinstance(input_, Image.Image):
input_ = F.pil_to_tensor(input_)
elif not isinstance(input_, torch.Tensor):
raise TypeError(f'Unsupported input type {type(input_)}.')
return input_
def transform(self, results: dict) -> dict:
"""Method to pack the input data."""
packed_results = dict()
if self.input_key in results:
input_ = results[self.input_key]
packed_results['inputs'] = self.format_input(input_)
data_sample = DataSample()
# Set default keys
if 'gt_label' in results:
data_sample.set_gt_label(results['gt_label'])
if 'gt_score' in results:
data_sample.set_gt_score(results['gt_score'])
if 'mask' in results:
data_sample.set_mask(results['mask'])
# Set custom algorithm keys
for key in self.algorithm_keys:
if key in results:
data_sample.set_field(results[key], key)
# Set meta keys
for key in self.meta_keys:
if key in results:
data_sample.set_field(results[key], key, field_type='metainfo')
packed_results['data_samples'] = data_sample
return packed_results
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f"(input_key='{self.input_key}', "
repr_str += f'algorithm_keys={self.algorithm_keys}, '
repr_str += f'meta_keys={self.meta_keys})'
return repr_str
@TRANSFORMS.register_module()
class PackMultiTaskInputs(BaseTransform):
"""Convert all image labels of multi-task dataset to a dict of tensor.
Args:
multi_task_fields (Sequence[str]):
input_key (str):
task_handlers (dict):
"""
def __init__(self,
multi_task_fields,
input_key='img',
task_handlers=dict()):
self.multi_task_fields = multi_task_fields
self.input_key = input_key
self.task_handlers = defaultdict(PackInputs)
for task_name, task_handler in task_handlers.items():
self.task_handlers[task_name] = TRANSFORMS.build(task_handler)
def transform(self, results: dict) -> dict:
"""Method to pack the input data.
result = {'img_path': 'a.png', 'gt_label': {'task1': 1, 'task3': 3},
'img': array([[[ 0, 0, 0])
"""
packed_results = dict()
results = results.copy()
if self.input_key in results:
input_ = results[self.input_key]
packed_results['inputs'] = PackInputs.format_input(input_)
task_results = defaultdict(dict)
for field in self.multi_task_fields:
if field in results:
value = results.pop(field)
for k, v in value.items():
task_results[k].update({field: v})
data_sample = MultiTaskDataSample()
for task_name, task_result in task_results.items():
task_handler = self.task_handlers[task_name]
task_pack_result = task_handler({**results, **task_result})
data_sample.set_field(task_pack_result['data_samples'], task_name)
packed_results['data_samples'] = data_sample
return packed_results
def __repr__(self):
repr = self.__class__.__name__
task_handlers = ', '.join(
f"'{name}': {handler.__class__.__name__}"
for name, handler in self.task_handlers.items())
repr += f'(multi_task_fields={self.multi_task_fields}, '
repr += f"input_key='{self.input_key}', "
repr += f'task_handlers={{{task_handlers}}})'
return repr
@TRANSFORMS.register_module()
class Transpose(BaseTransform):
"""Transpose numpy array.
**Required Keys:**
- ``*keys``
**Modified Keys:**
- ``*keys``
Args:
keys (List[str]): The fields to convert to tensor.
order (List[int]): The output dimensions order.
"""
def __init__(self, keys, order):
self.keys = keys
self.order = order
def transform(self, results):
"""Method to transpose array."""
for key in self.keys:
results[key] = results[key].transpose(self.order)
return results
def __repr__(self):
return self.__class__.__name__ + \
f'(keys={self.keys}, order={self.order})'
@TRANSFORMS.register_module(('NumpyToPIL', 'ToPIL'))
class NumpyToPIL(BaseTransform):
"""Convert the image from OpenCV format to :obj:`PIL.Image.Image`.
**Required Keys:**
- ``img``
**Modified Keys:**
- ``img``
Args:
to_rgb (bool): Whether to convert img to rgb. Defaults to True.
"""
def __init__(self, to_rgb: bool = False) -> None:
self.to_rgb = to_rgb
def transform(self, results: dict) -> dict:
"""Method to convert images to :obj:`PIL.Image.Image`."""
img = results['img']
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) if self.to_rgb else img
results['img'] = Image.fromarray(img)
return results
def __repr__(self) -> str:
return self.__class__.__name__ + f'(to_rgb={self.to_rgb})'
@TRANSFORMS.register_module(('PILToNumpy', 'ToNumpy'))
class PILToNumpy(BaseTransform):
"""Convert img to :obj:`numpy.ndarray`.
**Required Keys:**
- ``img``
**Modified Keys:**
- ``img``
Args:
to_bgr (bool): Whether to convert img to rgb. Defaults to True.
dtype (str, optional): The dtype of the converted numpy array.
Defaults to None.
"""
def __init__(self, to_bgr: bool = False, dtype=None) -> None:
self.to_bgr = to_bgr
self.dtype = dtype
def transform(self, results: dict) -> dict:
"""Method to convert img to :obj:`numpy.ndarray`."""
img = np.array(results['img'], dtype=self.dtype)
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) if self.to_bgr else img
results['img'] = img
return results
def __repr__(self) -> str:
return self.__class__.__name__ + \
f'(to_bgr={self.to_bgr}, dtype={self.dtype})'
@TRANSFORMS.register_module()
class Collect(BaseTransform):
"""Collect and only reserve the specified fields.
**Required Keys:**
- ``*keys``
**Deleted Keys:**
All keys except those in the argument ``*keys``.
Args:
keys (Sequence[str]): The keys of the fields to be collected.
"""
def __init__(self, keys):
self.keys = keys
def transform(self, results):
data = {}
for key in self.keys:
data[key] = results[key]
return data
def __repr__(self):
return self.__class__.__name__ + f'(keys={self.keys})'