KyanChen's picture
Upload 303 files
4d0eb62
raw
history blame
7.88 kB
# Copyright (c) OpenMMLab. All rights reserved.
import pickle
from typing import List, Optional
import mmengine.dist as dist
import numpy as np
from mmengine.fileio import (LocalBackend, exists, get, get_file_backend,
join_path)
from mmengine.logging import MMLogger
from mmpretrain.registry import DATASETS
from .base_dataset import BaseDataset
from .categories import CIFAR10_CATEGORIES, CIFAR100_CATEGORIES
from .utils import check_md5, download_and_extract_archive
@DATASETS.register_module()
class CIFAR10(BaseDataset):
"""`CIFAR10 <https://www.cs.toronto.edu/~kriz/cifar.html>`_ Dataset.
This implementation is modified from
https://github.com/pytorch/vision/blob/master/torchvision/datasets/cifar.py
Args:
data_root (str): The root directory of the CIFAR Dataset.
split (str, optional): The dataset split, supports "train" and "test".
Default to "train".
metainfo (dict, optional): Meta information for dataset, such as
categories information. Defaults to None.
download (bool): Whether to download the dataset if not exists.
Defaults to True.
**kwargs: Other keyword arguments in :class:`BaseDataset`.
""" # noqa: E501
base_folder = 'cifar-10-batches-py'
url = 'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz'
filename = 'cifar-10-python.tar.gz'
tgz_md5 = 'c58f30108f718f92721af3b95e74349a'
train_list = [
['data_batch_1', 'c99cafc152244af753f735de768cd75f'],
['data_batch_2', 'd4bba439e000b95fd0a9bffe97cbabec'],
['data_batch_3', '54ebc095f3ab1f0389bbae665268c751'],
['data_batch_4', '634d18415352ddfa80567beed471001a'],
['data_batch_5', '482c414d41f54cd18b22e5b47cb7c3cb'],
]
test_list = [
['test_batch', '40351d587109b95175f43aff81a1287e'],
]
meta = {
'filename': 'batches.meta',
'key': 'label_names',
'md5': '5ff9c542aee3614f3951f8cda6e48888',
}
METAINFO = {'classes': CIFAR10_CATEGORIES}
def __init__(self,
data_root: str = '',
split: str = 'train',
metainfo: Optional[dict] = None,
download: bool = True,
data_prefix: str = '',
test_mode: bool = False,
**kwargs):
splits = ['train', 'test']
assert split in splits, \
f"The split must be one of {splits}, but get '{split}'"
self.split = split
# To handle the BC-breaking
if split == 'train' and test_mode:
logger = MMLogger.get_current_instance()
logger.warning('split="train" but test_mode=True. '
'The training set will be used.')
if not data_root and not data_prefix:
raise RuntimeError('Please set ``data_root`` to'
'specify the dataset path')
self.download = download
super().__init__(
# The CIFAR dataset doesn't need specify annotation file
ann_file='',
metainfo=metainfo,
data_root=data_root,
data_prefix=dict(root=data_prefix),
test_mode=test_mode,
**kwargs)
def load_data_list(self):
"""Load images and ground truth labels."""
root = self.data_prefix['root']
backend = get_file_backend(root, enable_singleton=True)
if dist.is_main_process() and not self._check_integrity():
if not isinstance(backend, LocalBackend):
raise RuntimeError(f'The dataset on {root} is not integrated, '
f'please manually handle it.')
if self.download:
download_and_extract_archive(
self.url, root, filename=self.filename, md5=self.tgz_md5)
else:
raise RuntimeError(
f'Cannot find {self.__class__.__name__} dataset in '
f"{self.data_prefix['root']}, you can specify "
'`download=True` to download automatically.')
dist.barrier()
assert self._check_integrity(), \
'Download failed or shared storage is unavailable. Please ' \
f'download the dataset manually through {self.url}.'
if self.split == 'train':
downloaded_list = self.train_list
else:
downloaded_list = self.test_list
imgs = []
gt_labels = []
# load the picked numpy arrays
for file_name, _ in downloaded_list:
file_path = join_path(root, self.base_folder, file_name)
entry = pickle.loads(get(file_path), encoding='latin1')
imgs.append(entry['data'])
if 'labels' in entry:
gt_labels.extend(entry['labels'])
else:
gt_labels.extend(entry['fine_labels'])
imgs = np.vstack(imgs).reshape(-1, 3, 32, 32)
imgs = imgs.transpose((0, 2, 3, 1)) # convert to HWC
if self.CLASSES is None:
# The metainfo in the file has the lowest priority, therefore
# we only need to load it if classes is not specified.
self._load_meta()
data_list = []
for img, gt_label in zip(imgs, gt_labels):
info = {'img': img, 'gt_label': int(gt_label)}
data_list.append(info)
return data_list
def _load_meta(self):
"""Load categories information from metafile."""
root = self.data_prefix['root']
path = join_path(root, self.base_folder, self.meta['filename'])
md5 = self.meta.get('md5', None)
if not exists(path) or (md5 is not None and not check_md5(path, md5)):
raise RuntimeError(
'Dataset metadata file not found or corrupted.' +
' You can use `download=True` to download it')
data = pickle.loads(get(path), encoding='latin1')
self._metainfo.setdefault('classes', data[self.meta['key']])
def _check_integrity(self):
"""Check the integrity of data files."""
root = self.data_prefix['root']
for fentry in (self.train_list + self.test_list):
filename, md5 = fentry[0], fentry[1]
fpath = join_path(root, self.base_folder, filename)
if not exists(fpath):
return False
if md5 is not None and not check_md5(fpath, md5):
return False
return True
def extra_repr(self) -> List[str]:
"""The extra repr information of the dataset."""
body = [f"Prefix of data: \t{self.data_prefix['root']}"]
return body
@DATASETS.register_module()
class CIFAR100(CIFAR10):
"""`CIFAR100 <https://www.cs.toronto.edu/~kriz/cifar.html>`_ Dataset.
Args:
data_root (str): The root directory of the CIFAR Dataset.
split (str, optional): The dataset split, supports "train" and "test".
Default to "train".
metainfo (dict, optional): Meta information for dataset, such as
categories information. Defaults to None.
download (bool): Whether to download the dataset if not exists.
Defaults to True.
**kwargs: Other keyword arguments in :class:`BaseDataset`.
"""
base_folder = 'cifar-100-python'
url = 'https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz'
filename = 'cifar-100-python.tar.gz'
tgz_md5 = 'eb9058c3a382ffc7106e4002c42a8d85'
train_list = [
['train', '16019d7e3df5f24257cddd939b257f8d'],
]
test_list = [
['test', 'f0ef6b0ae62326f3e7ffdfab6717acfc'],
]
meta = {
'filename': 'meta',
'key': 'fine_label_names',
'md5': '7973b15100ade9c7d40fb424638fde48',
}
METAINFO = {'classes': CIFAR100_CATEGORIES}