|
import argparse |
|
import json |
|
import os |
|
os.environ['CUDA_VISIBLE_DEVICES'] = '2' |
|
|
|
import yaml |
|
import torch |
|
import torch.nn as nn |
|
from tqdm import tqdm |
|
from torch.utils.data import DataLoader |
|
from torch.optim.lr_scheduler import MultiStepLR, CosineAnnealingLR |
|
|
|
import datasets |
|
import models |
|
import utils |
|
from test_inr_diinn_arbrcan_sadnarc_funsr_overnet import eval_psnr |
|
|
|
device = 'cuda:0' if torch.cuda.is_available() else 'cpu' |
|
|
|
def make_data_loader(spec, tag=''): |
|
if spec is None: |
|
return None |
|
|
|
dataset = datasets.make(spec['dataset']) |
|
dataset = datasets.make(spec['wrapper'], args={'dataset': dataset}) |
|
|
|
log('{} dataset: size={}'.format(tag, len(dataset))) |
|
for k, v in dataset[0].items(): |
|
if torch.is_tensor(v): |
|
log(' {}: shape={}'.format(k, v.shape)) |
|
elif isinstance(v, str): |
|
pass |
|
elif isinstance(v, dict): |
|
for k0, v0 in v.items(): |
|
if hasattr(v0, 'shape'): |
|
log(' {}: shape={}'.format(k0, v0.shape)) |
|
else: |
|
raise NotImplementedError |
|
|
|
loader = DataLoader(dataset, batch_size=spec['batch_size'], |
|
shuffle=(tag == 'train'), num_workers=4, pin_memory=True) |
|
return loader |
|
|
|
|
|
def make_data_loaders(): |
|
train_loader = make_data_loader(config.get('train_dataset'), tag='train') |
|
val_loader = make_data_loader(config.get('val_dataset'), tag='val') |
|
return train_loader, val_loader |
|
|
|
|
|
def prepare_training(): |
|
if config.get('resume') is not None: |
|
sv_file = torch.load(config['resume']) |
|
model = models.make(sv_file['model'], load_sd=True).cuda() |
|
optimizer = utils.make_optimizer( |
|
model.parameters(), sv_file['optimizer'], load_sd=True) |
|
epoch_start = sv_file['epoch'] + 1 |
|
if config.get('multi_step_lr') is None: |
|
lr_scheduler = None |
|
else: |
|
lr_scheduler = MultiStepLR(optimizer, **config['multi_step_lr']) |
|
for _ in range(epoch_start - 1): |
|
lr_scheduler.step() |
|
else: |
|
model = models.make(config['model']).cuda() |
|
optimizer = utils.make_optimizer( |
|
model.parameters(), config['optimizer']) |
|
epoch_start = 1 |
|
lr_scheduler = config.get('lr_scheduler') |
|
lr_scheduler_name = lr_scheduler.pop('name') |
|
if 'MultiStepLR' == lr_scheduler_name: |
|
lr_scheduler = MultiStepLR(optimizer, **lr_scheduler) |
|
elif 'CosineAnnealingLR' == lr_scheduler_name: |
|
lr_scheduler = CosineAnnealingLR(optimizer, **lr_scheduler) |
|
|
|
log('model: #params={}'.format(utils.compute_num_params(model, text=True))) |
|
return model, optimizer, epoch_start, lr_scheduler |
|
|
|
|
|
def train(train_loader, model, optimizer): |
|
model.train() |
|
loss_fn = nn.L1Loss() |
|
train_loss = utils.AveragerList() |
|
|
|
data_norm = config['data_norm'] |
|
t = data_norm['img'] |
|
img_sub = torch.FloatTensor(t['sub']).view(1, -1, 1, 1).cuda() |
|
img_div = torch.FloatTensor(t['div']).view(1, -1, 1, 1).cuda() |
|
t = data_norm['gt'] |
|
gt_sub = torch.FloatTensor(t['sub']).view(1, 1, -1).cuda() |
|
gt_div = torch.FloatTensor(t['div']).view(1, 1, -1).cuda() |
|
|
|
for batch in tqdm(train_loader, leave=False, desc='train'): |
|
|
|
|
|
keys = list(batch.keys()) |
|
batch = batch[keys[torch.randint(0, len(keys), [])]] |
|
for k, v in batch.items(): |
|
if torch.is_tensor(v): |
|
batch[k] = v.to(device) |
|
|
|
img = (batch['img'] - img_sub) / img_div |
|
gt = (batch['gt'] - gt_sub) / gt_div |
|
pred = model(img, gt.shape[-2:]) |
|
loss = loss_fn(pred, gt) |
|
|
|
train_loss.add(loss.item()) |
|
|
|
optimizer.zero_grad() |
|
loss.backward() |
|
optimizer.step() |
|
|
|
return train_loss.item() |
|
|
|
|
|
def main(config_, save_path): |
|
global config, log, writer |
|
config = config_ |
|
log, writer = utils.set_save_path(save_path) |
|
with open(os.path.join(save_path, 'config.yaml'), 'w') as f: |
|
yaml.dump(config, f, sort_keys=False) |
|
|
|
train_loader, val_loader = make_data_loaders() |
|
if config.get('data_norm') is None: |
|
config['data_norm'] = { |
|
'img': {'sub': [0], 'div': [1]}, |
|
'gt': {'sub': [0], 'div': [1]} |
|
} |
|
|
|
model, optimizer, epoch_start, lr_scheduler = prepare_training() |
|
|
|
n_gpus = len(os.environ['CUDA_VISIBLE_DEVICES'].split(',')) |
|
if n_gpus > 1: |
|
model = nn.parallel.DataParallel(model) |
|
|
|
epoch_max = config['epoch_max'] |
|
epoch_val_interval = config.get('epoch_val_interval') |
|
epoch_save_interval = config.get('epoch_save_interval') |
|
max_val_v = -1e18 |
|
|
|
timer = utils.Timer() |
|
|
|
for epoch in range(epoch_start, epoch_max + 1): |
|
t_epoch_start = timer.t() |
|
log_info = ['epoch {}/{}'.format(epoch, epoch_max)] |
|
|
|
writer.add_scalar('lr', optimizer.param_groups[0]['lr'], epoch) |
|
|
|
train_loss = train(train_loader, model, optimizer) |
|
if lr_scheduler is not None: |
|
lr_scheduler.step() |
|
|
|
log_info.append('train: loss={:.4f}'.format(train_loss)) |
|
writer.add_scalars('loss', {'train': train_loss}, epoch) |
|
|
|
if device != 'cpu' and n_gpus > 1: |
|
model_ = model.module |
|
else: |
|
model_ = model |
|
model_spec = config['model'] |
|
model_spec['sd'] = model_.state_dict() |
|
optimizer_spec = config['optimizer'] |
|
optimizer_spec['sd'] = optimizer.state_dict() |
|
sv_file = { |
|
'model': model_spec, |
|
'optimizer': optimizer_spec, |
|
'epoch': epoch |
|
} |
|
|
|
torch.save(sv_file, os.path.join(save_path, 'epoch-last.pth')) |
|
|
|
if (epoch_save_interval is not None) and (epoch % epoch_save_interval == 0): |
|
torch.save(sv_file, os.path.join(save_path, 'epoch-{}.pth'.format(epoch))) |
|
|
|
if (epoch_val_interval is not None) and (epoch % epoch_val_interval == 0): |
|
if device != 'cpu' and n_gpus > 1 and (config.get('eval_bsize') is not None): |
|
model_ = model.module |
|
else: |
|
model_ = model |
|
|
|
file_names = json.load(open(config['val_dataset']['dataset']['args']['split_file']))['test'] |
|
class_names = list(set([os.path.basename(os.path.dirname(x)) for x in file_names])) |
|
|
|
val_res_psnr, val_res_ssim = eval_psnr(val_loader, class_names, model_, |
|
data_norm=config['data_norm'], |
|
eval_type=config.get('eval_type'), |
|
eval_bsize=config.get('eval_bsize'), |
|
crop_border=4) |
|
|
|
log_info.append('val: psnr={:.4f}'.format(val_res_psnr['all'])) |
|
writer.add_scalars('psnr', {'val': val_res_psnr['all']}, epoch) |
|
if val_res_psnr['all'] > max_val_v: |
|
max_val_v = val_res_psnr['all'] |
|
torch.save(sv_file, os.path.join(save_path, 'epoch-best.pth')) |
|
|
|
t = timer.t() |
|
prog = (epoch - epoch_start + 1) / (epoch_max - epoch_start + 1) |
|
t_epoch = utils.time_text(t - t_epoch_start) |
|
t_elapsed, t_all = utils.time_text(t), utils.time_text(t / prog) |
|
log_info.append('{} {}/{}'.format(t_epoch, t_elapsed, t_all)) |
|
|
|
log(', '.join(log_info)) |
|
writer.flush() |
|
|
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--config', default='configs/baselines/train_UC_1x-5x_INR_diinn_arbrcan_sadnarc_overnet.yaml') |
|
parser.add_argument('--name', default='EXP20221208_2') |
|
parser.add_argument('--tag', default=None) |
|
parser.add_argument('--gpu', default='0') |
|
args = parser.parse_args() |
|
|
|
with open(args.config, 'r') as f: |
|
config = yaml.load(f, Loader=yaml.FullLoader) |
|
print('config loaded.') |
|
|
|
save_name = args.name |
|
if save_name is None: |
|
save_name = '_' + args.config.split('/')[-1][:-len('.yaml')] |
|
if args.tag is not None: |
|
save_name += '_' + args.tag |
|
save_path = os.path.join('./checkpoints', save_name) |
|
|
|
main(config, save_path) |
|
|