| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from einops import rearrange, repeat | |
| MIN_NUM_PATCHES = 16 | |
| """ | |
| This is a new remote sensing super-resolution method based on the prevalent transformer | |
| ref: | |
| https://github.com/lucidrains/vit-pytorch/blob/main/vit_pytorch/vit_pytorch.py | |
| """ | |
| class Residual(nn.Module): | |
| def __init__(self, fn): | |
| super().__init__() | |
| self.fn = fn | |
| def forward(self, x, **kwargs): | |
| return self.fn(x, **kwargs) + x | |
| class Residual2(nn.Module): | |
| def __init__(self, fn): | |
| super().__init__() | |
| self.fn = fn | |
| def forward(self, x, m=None, **kwargs): | |
| return self.fn(x, m, **kwargs) + x | |
| class PreNorm(nn.Module): | |
| def __init__(self, dim, fn): | |
| super().__init__() | |
| self.norm = nn.LayerNorm(dim) | |
| self.fn = fn | |
| def forward(self, x, **kwargs): | |
| return self.fn(self.norm(x), **kwargs) | |
| class PreNorm2(nn.Module): | |
| def __init__(self, dim, fn): | |
| super().__init__() | |
| self.norm = nn.LayerNorm(dim) | |
| self.fn = fn | |
| def forward(self, x, m=None, **kwargs): | |
| x = self.norm(x) | |
| if m is not None: m = self.norm(m) | |
| return self.fn(x, m, **kwargs) | |
| class FeedForward(nn.Module): | |
| def __init__(self, dim, hidden_dim, dropout = 0.): | |
| super().__init__() | |
| self.net = nn.Sequential( | |
| nn.Linear(dim, hidden_dim), | |
| nn.GELU(), | |
| nn.Dropout(dropout), | |
| nn.Linear(hidden_dim, dim), | |
| nn.Dropout(dropout) | |
| ) | |
| def forward(self, x): | |
| return self.net(x) | |
| class Attention(nn.Module): | |
| def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.): | |
| super().__init__() | |
| inner_dim = dim_head * heads | |
| self.heads = heads | |
| self.scale = dim ** -0.5 | |
| self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) | |
| self.to_out = nn.Sequential( | |
| nn.Linear(inner_dim, dim), | |
| nn.Dropout(dropout) | |
| ) | |
| def forward(self, x, mask = None): | |
| b, n, _, h = *x.shape, self.heads | |
| qkv = self.to_qkv(x).chunk(3, dim = -1) | |
| q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv) | |
| dots = torch.einsum('bhid,bhjd->bhij', q, k) * self.scale | |
| mask_value = -torch.finfo(dots.dtype).max | |
| if mask is not None: | |
| mask = F.pad(mask.flatten(1), (1, 0), value = True) | |
| assert mask.shape[-1] == dots.shape[-1], 'mask has incorrect dimensions' | |
| mask = mask[:, None, :] * mask[:, :, None] | |
| dots.masked_fill_(~mask, mask_value) | |
| del mask | |
| attn = dots.softmax(dim=-1) | |
| out = torch.einsum('bhij,bhjd->bhid', attn, v) | |
| out = rearrange(out, 'b h n d -> b n (h d)') | |
| out = self.to_out(out) | |
| return out | |
| class MixedAttention(nn.Module): | |
| def __init__(self, dim, heads=8, dim_head=64, dropout=0.): | |
| super().__init__() | |
| inner_dim = dim_head * heads | |
| self.heads = heads | |
| self.scale = dim ** -0.5 | |
| self.to_q = nn.Linear(dim, inner_dim, bias=False) | |
| self.to_k = nn.Linear(dim, inner_dim, bias=False) | |
| self.to_v = nn.Linear(dim, inner_dim, bias=False) | |
| self.to_out = nn.Sequential( | |
| nn.Linear(inner_dim, dim), | |
| nn.Dropout(dropout) | |
| ) | |
| def forward(self, x, m, mask=None): | |
| b, n, _, h = *x.shape, self.heads | |
| q = self.to_q(x) | |
| k = self.to_k(m) | |
| v = self.to_v(m) | |
| q = rearrange(q, 'b n (h d) -> b h n d', h=h) | |
| k = rearrange(k, 'b n (h d) -> b h n d', h=h) | |
| v = rearrange(v, 'b n (h d) -> b h n d', h=h) | |
| dots = torch.einsum('bhid,bhjd->bhij', q, k) * self.scale | |
| mask_value = -torch.finfo(dots.dtype).max | |
| if mask is not None: | |
| mask = F.pad(mask.flatten(1), (1, 0), value = True) | |
| assert mask.shape[-1] == dots.shape[-1], 'mask has incorrect dimensions' | |
| mask = mask[:, None, :] * mask[:, :, None] | |
| dots.masked_fill_(~mask, mask_value) | |
| del mask | |
| attn = dots.softmax(dim=-1) | |
| out = torch.einsum('bhij,bhjd->bhid', attn, v) | |
| out = rearrange(out, 'b h n d -> b n (h d)') | |
| out = self.to_out(out) | |
| return out | |
| class TransformerEncoder(nn.Module): | |
| def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout): | |
| super().__init__() | |
| self.layers = nn.ModuleList([]) | |
| for _ in range(depth): | |
| self.layers.append(nn.ModuleList([ | |
| Residual(PreNorm(dim, Attention(dim, heads=heads, dim_head=dim_head, dropout=dropout))), | |
| Residual(PreNorm(dim, FeedForward(dim, mlp_dim, dropout=dropout))) | |
| ])) | |
| def forward(self, x, mask=None): | |
| for attn, ff in self.layers: | |
| x = attn(x, mask=mask) | |
| x = ff(x) | |
| return x | |
| class TransformerDecoder(nn.Module): | |
| def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout): | |
| super().__init__() | |
| self.layers = nn.ModuleList([]) | |
| for _ in range(depth): | |
| self.layers.append(nn.ModuleList([ | |
| Residual(PreNorm(dim, Attention(dim, heads=heads, dim_head=dim_head, dropout=dropout))), | |
| Residual2(PreNorm2(dim, MixedAttention(dim, heads=heads, dim_head=dim_head, dropout=dropout))), | |
| Residual(PreNorm(dim, FeedForward(dim, mlp_dim, dropout=dropout))) | |
| ])) | |
| def with_pos_embed(self, tensor, pos=None): | |
| return tensor if pos is None else tensor + pos | |
| def forward(self, x, m, mask=None): | |
| for attn1, attn2, ff in self.layers: | |
| x = attn1(x, mask=mask) | |
| x = attn2(x, m, mask=mask) | |
| x = ff(x) | |
| return x |