Spaces:
Running
Running
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor | |
from transformers.pipelines.audio_utils import ffmpeg_read | |
from huggingface_hub import login | |
import yt_dlp as youtube_dl | |
import gradio as gr | |
import tempfile | |
import spaces | |
import torch | |
import time | |
import os | |
login(os.environ["HF"], add_to_git_credential=True) | |
BATCH_SIZE = 16 | |
FILE_LIMIT_MB = 1000 | |
YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 | |
model_id = "Kushtrim/whisper-base-shqip" | |
model = AutoModelForSpeechSeq2Seq.from_pretrained( | |
model_id, torch_dtype=torch_dtype, use_safetensors=True, token=True).to(device) | |
processor = AutoProcessor.from_pretrained(model_id, token=True) | |
pipe = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, | |
chunk_length_s=30, torch_dtype=torch_dtype, device=device, | |
token=os.environ["HF"]) | |
# pipe = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, | |
# max_new_tokens=128, chunk_length_s=15, batch_size=16, torch_dtype=torch_dtype, device=device, | |
# token=os.environ["HF"]) | |
def transcribe(inputs, task): | |
if inputs is None: | |
raise gr.Error( | |
"No audio file submitted! Please upload or record an audio file before submitting your request.") | |
text = pipe(inputs, generate_kwargs={ | |
"task": task, 'language': 'sq'}, return_timestamps=True)["text"] | |
return text | |
def _return_yt_html_embed(yt_url): | |
video_id = yt_url.split("?v=")[-1] | |
HTML_str = ( | |
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>' | |
" </center>" | |
) | |
return HTML_str | |
def download_yt_audio(yt_url, filename): | |
info_loader = youtube_dl.YoutubeDL() | |
try: | |
info = info_loader.extract_info(yt_url, download=False) | |
except youtube_dl.utils.DownloadError as err: | |
raise gr.Error(str(err)) | |
file_length = info["duration_string"] | |
file_h_m_s = file_length.split(":") | |
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s] | |
if len(file_h_m_s) == 1: | |
file_h_m_s.insert(0, 0) | |
if len(file_h_m_s) == 2: | |
file_h_m_s.insert(0, 0) | |
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2] | |
if file_length_s > YT_LENGTH_LIMIT_S: | |
yt_length_limit_hms = time.strftime( | |
"%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S)) | |
file_length_hms = time.strftime( | |
"%HH:%MM:%SS", time.gmtime(file_length_s)) | |
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.") | |
ydl_opts = {"outtmpl": filename, | |
"format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"} | |
with youtube_dl.YoutubeDL(ydl_opts) as ydl: | |
try: | |
ydl.download([yt_url]) | |
except youtube_dl.utils.ExtractorError as err: | |
raise gr.Error(str(err)) | |
def yt_transcribe(yt_url, task, max_filesize=75.0): | |
html_embed_str = _return_yt_html_embed(yt_url) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
filepath = os.path.join(tmpdirname, "video.mp4") | |
download_yt_audio(yt_url, filepath) | |
with open(filepath, "rb") as f: | |
inputs = f.read() | |
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate) | |
inputs = {"array": inputs, | |
"sampling_rate": pipe.feature_extractor.sampling_rate} | |
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={ | |
"task": task}, return_timestamps=True)["text"] | |
return html_embed_str, text | |
demo = gr.Blocks() | |
file_transcribe = gr.Interface( | |
fn=transcribe, | |
inputs=[ | |
gr.Audio(sources=["upload"], type="filepath", label="Audio file"), | |
gr.Radio(choices=["transcribe"], label="Task"), | |
], | |
outputs="text", | |
title="Whisper Base Shqip: Transcribe Audio", | |
description=( | |
"Easily transcribe long-form audio inputs in Albanian with high accuracy! This demo utilizes the fine-tuned " | |
f"Whisper model [{model_id}](https://huggingface.co/{model_id}), specially adapted for the Albanian language, " | |
"powered by π€ Transformers. With just a click, transform microphone or audio file inputs of any length into " | |
"text with exceptional transcription quality." | |
), | |
allow_flagging="never", | |
) | |
mf_transcribe = gr.Interface( | |
fn=transcribe, | |
inputs=[ | |
gr.Audio(sources=["microphone"], type="filepath"), | |
gr.Radio(choices=["transcribe"], label="Task"), | |
], | |
outputs="text", | |
title="Whisper Base Shqip: Transcribe Audio", | |
description=( | |
"Easily transcribe long-form audio inputs in Albanian with high accuracy! This demo utilizes the fine-tuned " | |
f"Whisper model [{model_id}](https://huggingface.co/{model_id}), specially adapted for the Albanian language, " | |
"powered by π€ Transformers. With just a click, transform microphone or audio file inputs of any length into " | |
"text with exceptional transcription quality." | |
), | |
allow_flagging="never", | |
) | |
yt_transcribe = gr.Interface( | |
fn=yt_transcribe, | |
inputs=[ | |
gr.Textbox( | |
lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"), | |
gr.Radio(choices=["transcribe"], label="Task") | |
], | |
outputs=["html", "text"], | |
title="Whisper Base Shqip: Transcribe Audio", | |
description=( | |
"Easily transcribe long-form audio inputs in Albanian with high accuracy! This demo utilizes the fine-tuned " | |
f"Whisper model [{model_id}](https://huggingface.co/{model_id}), specially adapted for the Albanian language, " | |
"powered by π€ Transformers. With just a click, transform microphone or audio file inputs of any length into " | |
"text with exceptional transcription quality." | |
), | |
allow_flagging="never", | |
) | |
with demo: | |
gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"]) | |
demo.launch() | |