Spaces:
Running
Running
import os | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
from datetime import datetime | |
import gradio as gr | |
from typing import Dict, List, Union, Optional | |
import logging | |
import re | |
# Configure logging | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
class ContentAnalyzer: | |
def __init__(self): | |
self.device = "cuda" if torch.cuda.is_available() else "cpu" | |
self.model = None | |
self.tokenizer = None | |
self.categories = [ | |
"Violence", "Death", "Substance Use", "Gore", | |
"Vomit", "Sexual Content", "Sexual Abuse", | |
"Self-Harm", "Gun Use", "Animal Cruelty", | |
"Mental Health Issues" | |
] | |
self.pattern = re.compile(r'\b(' + '|'.join(self.categories) + r')\b', re.IGNORECASE) | |
logger.info(f"Initialized analyzer with device: {self.device}") | |
self._load_model() | |
def _load_model(self) -> None: | |
"""Load model and tokenizer with CPU optimization""" | |
try: | |
logger.info("Loading model components...") | |
self.tokenizer = AutoTokenizer.from_pretrained( | |
"deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B", | |
use_fast=True, | |
truncation_side="left" | |
) | |
self.model = AutoModelForCausalLM.from_pretrained( | |
"deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B", | |
torch_dtype=torch.float32, | |
low_cpu_mem_usage=True | |
).to(self.device).eval() | |
logger.info("Model loaded successfully") | |
except Exception as e: | |
logger.error(f"Model loading failed: {str(e)}") | |
raise | |
def _chunk_text(self, text: str, max_tokens: int = 512) -> List[str]: | |
"""Context-aware chunking with token counting""" | |
paragraphs = [p.strip() for p in text.split('\n\n') if p.strip()] | |
chunks = [] | |
current_chunk = [] | |
current_length = 0 | |
for para in paragraphs: | |
para_tokens = self.tokenizer.encode(para, add_special_tokens=False) | |
para_length = len(para_tokens) | |
if current_length + para_length > max_tokens and current_chunk: | |
chunk_text = "\n\n".join(current_chunk) | |
chunks.append(chunk_text) | |
current_chunk = [para] | |
current_length = para_length | |
else: | |
current_chunk.append(para) | |
current_length += para_length | |
if current_chunk: | |
chunk_text = "\n\n".join(current_chunk) | |
chunks.append(chunk_text) | |
logger.info(f"Split text into {len(chunks)} chunks (max_tokens={max_tokens})") | |
return chunks | |
async def _analyze_chunk(self, chunk: str) -> tuple[List[str], str]: | |
"""Deep analysis with step-by-step reasoning""" | |
prompt = f"""As a deep-thinking content analyzer, carefully evaluate this text for sensitive content. | |
Input text: {chunk} | |
Think through each step: | |
1. What is happening in the text? | |
2. What potentially sensitive themes or elements are present? | |
3. For each category below, is there clear evidence? | |
Categories: {", ".join(self.categories)} | |
Detailed analysis: | |
""" | |
try: | |
inputs = self.tokenizer(prompt, return_tensors="pt", truncation=True).to(self.device) | |
with torch.no_grad(): | |
outputs = self.model.generate( | |
**inputs, | |
do_sample=True, | |
temperature=0.7, | |
top_p=0.9, | |
max_length=8192 | |
) | |
full_response = self.tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Extract categories more reliably using multiple patterns | |
categories_found = set() | |
# Look for explicit category mentions | |
category_matches = self.pattern.findall(full_response.lower()) | |
# Normalize and validate matches | |
for match in category_matches: | |
for category in self.categories: | |
if match.lower() == category.lower(): | |
categories_found.add(category) | |
# Convert to list and sort for consistency | |
matched_categories = sorted(list(categories_found)) | |
# Clean up reasoning text | |
reasoning = full_response.split("\n\nCategories found:")[0] if "\n\nCategories found:" in full_response else full_response | |
reasoning = reasoning.strip() | |
if not matched_categories and any(trigger_word in full_response.lower() for trigger_word in | |
["concerning", "warning", "caution", "trigger", "sensitive"]): | |
logger.warning(f"Potential triggers found but no categories matched in chunk") | |
logger.info(f"Chunk analysis complete - Categories found: {matched_categories}") | |
return matched_categories, reasoning | |
except Exception as e: | |
logger.error(f"Chunk analysis error: {str(e)}") | |
return [], f"Analysis error: {str(e)}" | |
async def analyze_script(self, script: str, progress: Optional[gr.Progress] = None) -> tuple[List[str], List[str]]: | |
"""Main analysis workflow with progress updates""" | |
if not script.strip(): | |
return ["No content provided"], ["No analysis performed"] | |
identified_triggers = set() | |
reasoning_outputs = [] | |
chunks = self._chunk_text(script) | |
if not chunks: | |
return ["Empty text after chunking"], ["No analysis performed"] | |
total_chunks = len(chunks) | |
for idx, chunk in enumerate(chunks): | |
if progress: | |
progress((idx/total_chunks, f"Deep analysis of chunk {idx+1}/{total_chunks}")) | |
chunk_triggers, chunk_reasoning = await self._analyze_chunk(chunk) | |
identified_triggers.update(chunk_triggers) | |
reasoning_outputs.append(f"Chunk {idx + 1} Analysis:\n{chunk_reasoning}") | |
logger.info(f"Processed chunk {idx+1}/{total_chunks}, found triggers: {chunk_triggers}") | |
if progress: | |
progress((1.0, "Analysis complete")) | |
final_triggers = sorted(list(identified_triggers)) if identified_triggers else ["None"] | |
logger.info(f"Final triggers identified: {final_triggers}") | |
return final_triggers, reasoning_outputs | |
async def analyze_content( | |
script: str, | |
progress: Optional[gr.Progress] = None | |
) -> Dict[str, Union[List[str], str]]: | |
"""Gradio interface function with enhanced trigger detection""" | |
try: | |
analyzer = ContentAnalyzer() | |
triggers, reasoning_output = await analyzer.analyze_script(script, progress) | |
# Extract triggers from detailed analysis | |
detected_triggers = set() | |
full_reasoning = "\n\n".join(reasoning_output) | |
# Look for explicit category markers | |
category_markers = [ | |
(r'\b(\w+):\s*\+', 1), # Matches "Category: +" | |
(r'\*\*(\w+(?:\s+\w+)?):\*\*[^\n]*?\bMarked with "\+"', 1), # Matches "**Category:** ... Marked with "+" | |
(r'(\w+(?:\s+\w+)?)\s*is clearly present', 1), # Matches "Category is clearly present" | |
] | |
for pattern, group in category_markers: | |
matches = re.finditer(pattern, full_reasoning, re.IGNORECASE) | |
for match in matches: | |
category = match.group(group).strip() | |
# Normalize category names to match predefined categories | |
for predefined_category in analyzer.categories: | |
if category.lower() in predefined_category.lower(): | |
detected_triggers.add(predefined_category) | |
# Add any triggers found through direct pattern matching | |
for category in analyzer.categories: | |
pattern = fr'\b{re.escape(category)}\b.*?(present|evident|indicated|clear|obvious)' | |
if re.search(pattern, full_reasoning, re.IGNORECASE): | |
detected_triggers.add(category) | |
# If no triggers were found through detailed analysis, fall back to original triggers | |
final_triggers = sorted(list(detected_triggers)) if detected_triggers else triggers | |
result = { | |
"detected_triggers": final_triggers if final_triggers else ["None"], | |
"confidence": "High confidence" if final_triggers and final_triggers != ["None"] else "No triggers found", | |
"model": "DeepSeek-R1-Distill-Qwen-1.5B", | |
"analysis_timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"), | |
"analysis_reasoning": full_reasoning | |
} | |
logger.info(f"Enhanced analysis complete. Results: {result}") | |
return result | |
except Exception as e: | |
logger.error(f"Analysis error: {str(e)}") | |
return { | |
"detected_triggers": ["Analysis error"], | |
"confidence": "Error", | |
"model": "DeepSeek-R1-Distill-Qwen-1.5B", | |
"analysis_timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"), | |
"analysis_reasoning": str(e), | |
"error": str(e) | |
} | |
if __name__ == "__main__": | |
iface = gr.Interface( | |
fn=analyze_content, | |
inputs=gr.Textbox(lines=12, label="Paste Script Here", placeholder="Enter text to analyze..."), | |
outputs=[ | |
gr.JSON(label="Analysis Results"), | |
gr.Textbox(label="Analysis Reasoning", lines=10) | |
], | |
title="TREAT - Trigger Analysis for Entertainment Texts", | |
description="Deep analysis of scripts for sensitive content using AI", | |
allow_flagging="never" | |
) | |
iface.launch(show_error=True) |