Andrew Stirn commited on
Commit
b054645
1 Parent(s): 57b411c

ready to go live

Browse files
Files changed (2) hide show
  1. app.py +1 -1
  2. tiger.md +19 -13
app.py CHANGED
@@ -98,7 +98,7 @@ if __name__ == '__main__':
98
  st.session_state.off_target = None
99
 
100
  # title and documentation
101
- st.markdown(Path('tiger.md').read_text())
102
  st.divider()
103
 
104
  # mode selection
 
98
  st.session_state.off_target = None
99
 
100
  # title and documentation
101
+ st.markdown(Path('tiger.md').read_text(), unsafe_allow_html=True)
102
  st.divider()
103
 
104
  # mode selection
tiger.md CHANGED
@@ -1,17 +1,17 @@
1
- ## TIGER Tool for Cas13 Efficacy Prediction
2
 
3
- Welcome to TIGER! This online tool accompanies our *Nature Biotechnology* article.
 
4
  TIGER's ability to make accurate on- and off-target predictions enables users to 1) design highly effective gRNAs and 2) precisely modulate transcript expression by engineered gRNA-target mismatches.
5
 
6
- If you use TIGER, please consider citing our study:
7
- > Wessels, H.-H., Stirn, A., Méndez-Mancilla, A., Kim, E. J., Hart, S. K., Knowles, D. A., & Sanjana, N. E. (2023). Prediction of on-target and off-target activity of CRISPR–Cas13d guide RNAs using deep learning. Nature Biotechnology. https://doi.org/10.1038/s41587-023-01830-8
8
-
9
 
10
  Please note that this precompiled, online tool differs from the manuscript slightly.
11
- First, this version of TIGER predicts using just target and guide sequence (see Figure 3c). Second, we map TIGER's predictions to the unit interval to make estimates more interpretable: a Guide Score close to 1 corresponds to high gRNA activity (i.e. desirable for on-target guides).
12
- A Guide Score near 0 denotes no/minimal activity (i.e. desirable for off-target effects).
13
  This transformation is monotonic and therefore preserves Spearman, AUROC, and AUPRC performance.
14
- These estimates (transformations of log-fold-change predictions from TIGER) appear in the "Guide Score" column of this online tool’s output.
15
 
16
  ### Using the TIGER Online Tool
17
 
@@ -20,11 +20,12 @@ The tool supports two methods for transcript entry:
20
  2) Uploading a FASTA file that can contain one or more transcripts. Each transcript **must** have a unique ID.
21
 
22
  The tool has three run modes:
23
- - Report all on-target gRNAs for each provided transcript. This mode does not support off-target identification.
24
- - Report the top 10 most active, on-target gRNAs for each provided transcript. This mode allows for the optional identification of off-target effects.
25
- - Report the top 10 most active, on-target gRNAs for each provided transcript and their titration candidates (all possible single mismatches). Larger guide scores correspond to more transcript knockdown. This mode also does not support off-target identification.
26
 
27
- The tool uses version 19 of Gencode (protein-coding and lncRNA) to identify off-target candidates.
 
28
 
29
  ### Future Development Plans
30
 
@@ -34,4 +35,9 @@ The tool uses version 19 of Gencode (protein-coding and lncRNA) to identify off-
34
  - Incorporate non-scalar features (target accessibility, hybridization energies, etc...)
35
 
36
  To report bugs or to request additional features, please click the "Community" button in the top right corner of this screen and start a new discussion.
37
- Alternatively, please email [Andrew Stirn](mailto:andrew.stirn@cs.columbia.edu).
 
 
 
 
 
 
1
+ ## TIGER Online Tool for Cas13 Efficacy Prediction
2
 
3
+ Welcome to TIGER!
4
+ This online tool accompanies our recent study from the labs of [David Knowles](https://daklab.github.io/) and [Neville Sanjana](http://sanjanalab.org/).
5
  TIGER's ability to make accurate on- and off-target predictions enables users to 1) design highly effective gRNAs and 2) precisely modulate transcript expression by engineered gRNA-target mismatches.
6
 
7
+ If you use the TIGER Online Tool in your study, please consider citing:
8
+ > **[Prediction of on-target and off-target activity of CRISPR–Cas13d guide RNAs using deep learning](http://sanjanalab.org/reprints/WesselsStirn_NBT_2023.pdf).** Wessels, H.-H.<sup>\*</sup>, Stirn, A.<sup>\*</sup>, Méndez-Mancilla, A., Kim, E. J., Hart, S. K., Knowles, D. A.<sup>#</sup>, & Sanjana, N. E.<sup>#</sup> *Nature Biotechnology* (2023). [https://doi.org/10.1038/s41587-023-01830-8](https://doi.org/10.1038/s41587-023-01830-8)
 
9
 
10
  Please note that this precompiled, online tool differs from the manuscript slightly.
11
+ First, this version of TIGER predicts using just target and guide sequence (see [Figure 3c](http://sanjanalab.org/reprints/WesselsStirn_NBT_2023.pdf)). Second, we map TIGER's predictions to the unit interval (0,1) to make estimates more interpretable: A `Guide Score` close to 1 corresponds to high gRNA activity (i.e. desirable for on-target guides).
12
+ A `Guide Score` near 0 denotes no/minimal activity (i.e. desirable for predicted off-targets to minimize the activity of these gRNAs on unintended targets).
13
  This transformation is monotonic and therefore preserves Spearman, AUROC, and AUPRC performance.
14
+ These estimates (transformations of log-fold-change predictions from TIGER) appear in the `Guide Score` column of this online tool’s output.
15
 
16
  ### Using the TIGER Online Tool
17
 
 
20
  2) Uploading a FASTA file that can contain one or more transcripts. Each transcript **must** have a unique ID.
21
 
22
  The tool has three run modes:
23
+ 1) Report all on-target gRNAs for each provided transcript.
24
+ 2) Report the top 10 most active, on-target gRNAs for each provided transcript. This mode allows for the optional identification of off-target effects. For off-target avoidance, please note that higher a `Guide Score` (closer to 1) corresponds to *more* likely off-target effects.
25
+ 3) Report the top 10 most active, on-target gRNAs for each provided transcript and their titration candidates (all possible single mismatches). A higher `Guide Score` (closer to 1) corresponds to greater transcript knockdown.
26
 
27
+ The tool uses Gencode v19 (protein-coding and non-coding RNAs) to identify potential off-target transcripts.
28
+ Due to computational limitations, the online tool only supports off-target predictions for the top 10 most active, on-target gRNAs per transcript.
29
 
30
  ### Future Development Plans
31
 
 
35
  - Incorporate non-scalar features (target accessibility, hybridization energies, etc...)
36
 
37
  To report bugs or to request additional features, please click the "Community" button in the top right corner of this screen and start a new discussion.
38
+ Alternatively, please email [Andrew Stirn](mailto:andrew.stirn@cs.columbia.edu).
39
+
40
+ #### Version
41
+ You are using version 1.0 of this tool.
42
+ We will increment the major number when a change causes a difference in predictions (e.g. retraining the model).
43
+ We will otherwise increment the minor number (e.g. changes to the user interface, speed improvements, etc...).