|
|
|
|
|
import spaces |
|
import supervision as sv |
|
import PIL.Image as Image |
|
import cv2 |
|
import numpy as np |
|
from ultralytics import YOLO |
|
import gradio as gr |
|
import torch |
|
|
|
|
|
model_filenames = [ |
|
"yolo11n.pt", |
|
"yolo11s.pt", |
|
"yolo11m.pt", |
|
"yolo11l.pt", |
|
"yolo11x.pt" |
|
] |
|
|
|
|
|
box_annotator = sv.BoxAnnotator() |
|
|
|
|
|
category_dict = { |
|
0: 'person', 1: 'bicycle', 2: 'car', 3: 'motorcycle', 4: 'airplane', 5: 'bus', |
|
6: 'train', 7: 'truck', 8: 'boat', 9: 'traffic light', 10: 'fire hydrant', |
|
11: 'stop sign', 12: 'parking meter', 13: 'bench', 14: 'bird', 15: 'cat', |
|
16: 'dog', 17: 'horse', 18: 'sheep', 19: 'cow', 20: 'elephant', 21: 'bear', |
|
22: 'zebra', 23: 'giraffe', 24: 'backpack', 25: 'umbrella', 26: 'handbag', |
|
27: 'tie', 28: 'suitcase', 29: 'frisbee', 30: 'skis', 31: 'snowboard', |
|
32: 'sports ball', 33: 'kite', 34: 'baseball bat', 35: 'baseball glove', |
|
36: 'skateboard', 37: 'surfboard', 38: 'tennis racket', 39: 'bottle', |
|
40: 'wine glass', 41: 'cup', 42: 'fork', 43: 'knife', 44: 'spoon', 45: 'bowl', |
|
46: 'banana', 47: 'apple', 48: 'sandwich', 49: 'orange', 50: 'broccoli', |
|
51: 'carrot', 52: 'hot dog', 53: 'pizza', 54: 'donut', 55: 'cake', |
|
56: 'chair', 57: 'couch', 58: 'potted plant', 59: 'bed', 60: 'dining table', |
|
61: 'toilet', 62: 'tv', 63: 'laptop', 64: 'mouse', 65: 'remote', 66: 'keyboard', |
|
67: 'cell phone', 68: 'microwave', 69: 'oven', 70: 'toaster', 71: 'sink', |
|
72: 'refrigerator', 73: 'book', 74: 'clock', 75: 'vase', 76: 'scissors', |
|
77: 'teddy bear', 78: 'hair drier', 79: 'toothbrush' |
|
} |
|
|
|
|
|
@spaces.GPU |
|
def yolo_inference(image, model_id, conf_threshold, iou_threshold, max_detection): |
|
model = YOLO(model_id) |
|
|
|
results = model(source=image, imgsz=640, iou=iou_threshold, conf=conf_threshold, verbose=False, max_det=max_detection)[0] |
|
detections = sv.Detections.from_ultralytics(results) |
|
|
|
|
|
counts = {} |
|
for class_id in detections.class_id: |
|
label = category_dict[class_id] |
|
if label not in counts: |
|
counts[label] = 0 |
|
counts[label] += 1 |
|
|
|
|
|
labels = [ |
|
f"{category_dict[class_id]} {confidence:.2f}" |
|
for class_id, confidence in zip(detections.class_id, detections.confidence) |
|
] |
|
|
|
|
|
annotated_image = box_annotator.annotate(image, detections=detections, labels=labels) |
|
|
|
|
|
annotated_image_cv = cv2.cvtColor(np.array(annotated_image), cv2.COLOR_RGB2BGR) |
|
|
|
|
|
y_offset = 30 |
|
for label, count in counts.items(): |
|
text = f"{label}: {count}" |
|
cv2.putText(annotated_image_cv, text, (10, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2, cv2.LINE_AA) |
|
y_offset += 25 |
|
|
|
|
|
return Image.fromarray(cv2.cvtColor(annotated_image_cv, cv2.COLOR_BGR2RGB)) |
|
|
|
|
|
def app(): |
|
with gr.Blocks(): |
|
with gr.Row(): |
|
with gr.Column(): |
|
image = gr.Image(type="pil", label="Image", interactive=True) |
|
model_id = gr.Dropdown(label="Model", choices=model_filenames, value=model_filenames[0] if model_filenames else "") |
|
conf_threshold = gr.Slider(label="Confidence Threshold", minimum=0.1, maximum=1.0, step=0.1, value=0.25) |
|
iou_threshold = gr.Slider(label="IoU Threshold", minimum=0.1, maximum=1.0, step=0.1, value=0.45) |
|
max_detection = gr.Slider(label="Max Detection", minimum=1, maximum=300, step=1, value=300) |
|
yolov_infer = gr.Button(value="Detect Objects") |
|
with gr.Column(): |
|
output_image = gr.Image(type="pil", label="Annotated Image", interactive=False) |
|
yolov_infer.click(fn=yolo_inference, inputs=[image, model_id, conf_threshold, iou_threshold, max_detection], outputs=[output_image]) |
|
|
|
|
|
gradio_app = gr.Blocks() |
|
with gradio_app: |
|
gr.HTML("<h1 style='text-align: center'>Object Counting using YoloV11</h1>") |
|
gr.HTML("<p style='text-align: center'>Upload an image to run inference. By Kelvin</p>") |
|
with gr.Row(): |
|
with gr.Column(): |
|
app() |
|
|
|
|
|
gradio_app.launch() |
|
|
|
|