Klliu04 commited on
Commit
cc6dd07
·
verified ·
1 Parent(s): 4d8731e

Upload app.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. app.py +108 -0
app.py ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ # !pip install ultralytics gradio supervision torch pillow opencv-python
3
+ import spaces
4
+ import supervision as sv
5
+ import PIL.Image as Image
6
+ import cv2
7
+ import numpy as np
8
+ from ultralytics import YOLO
9
+ import gradio as gr
10
+ import torch
11
+
12
+ # YOLO model filenames
13
+ model_filenames = [
14
+ "yolo11n.pt",
15
+ "yolo11s.pt",
16
+ "yolo11m.pt",
17
+ "yolo11l.pt",
18
+ "yolo11x.pt"
19
+ ]
20
+
21
+ # Box annotator for drawing bounding boxes
22
+ box_annotator = sv.BoxAnnotator()
23
+
24
+ # COCO category dictionary for labeling classes
25
+ category_dict = {
26
+ 0: 'person', 1: 'bicycle', 2: 'car', 3: 'motorcycle', 4: 'airplane', 5: 'bus',
27
+ 6: 'train', 7: 'truck', 8: 'boat', 9: 'traffic light', 10: 'fire hydrant',
28
+ 11: 'stop sign', 12: 'parking meter', 13: 'bench', 14: 'bird', 15: 'cat',
29
+ 16: 'dog', 17: 'horse', 18: 'sheep', 19: 'cow', 20: 'elephant', 21: 'bear',
30
+ 22: 'zebra', 23: 'giraffe', 24: 'backpack', 25: 'umbrella', 26: 'handbag',
31
+ 27: 'tie', 28: 'suitcase', 29: 'frisbee', 30: 'skis', 31: 'snowboard',
32
+ 32: 'sports ball', 33: 'kite', 34: 'baseball bat', 35: 'baseball glove',
33
+ 36: 'skateboard', 37: 'surfboard', 38: 'tennis racket', 39: 'bottle',
34
+ 40: 'wine glass', 41: 'cup', 42: 'fork', 43: 'knife', 44: 'spoon', 45: 'bowl',
35
+ 46: 'banana', 47: 'apple', 48: 'sandwich', 49: 'orange', 50: 'broccoli',
36
+ 51: 'carrot', 52: 'hot dog', 53: 'pizza', 54: 'donut', 55: 'cake',
37
+ 56: 'chair', 57: 'couch', 58: 'potted plant', 59: 'bed', 60: 'dining table',
38
+ 61: 'toilet', 62: 'tv', 63: 'laptop', 64: 'mouse', 65: 'remote', 66: 'keyboard',
39
+ 67: 'cell phone', 68: 'microwave', 69: 'oven', 70: 'toaster', 71: 'sink',
40
+ 72: 'refrigerator', 73: 'book', 74: 'clock', 75: 'vase', 76: 'scissors',
41
+ 77: 'teddy bear', 78: 'hair drier', 79: 'toothbrush'
42
+ }
43
+
44
+ # YOLO inference function
45
+ @spaces.GPU
46
+ def yolo_inference(image, model_id, conf_threshold, iou_threshold, max_detection):
47
+ model = YOLO(model_id)
48
+ # model.to("cuda")
49
+ results = model(source=image, imgsz=640, iou=iou_threshold, conf=conf_threshold, verbose=False, max_det=max_detection)[0]
50
+ detections = sv.Detections.from_ultralytics(results)
51
+
52
+ # Count objects
53
+ counts = {}
54
+ for class_id in detections.class_id:
55
+ label = category_dict[class_id]
56
+ if label not in counts:
57
+ counts[label] = 0
58
+ counts[label] += 1
59
+
60
+ # Prepare labels for drawing boxes and counting
61
+ labels = [
62
+ f"{category_dict[class_id]} {confidence:.2f}"
63
+ for class_id, confidence in zip(detections.class_id, detections.confidence)
64
+ ]
65
+
66
+ # Annotate the image with bounding boxes
67
+ annotated_image = box_annotator.annotate(image, detections=detections, labels=labels)
68
+
69
+ # Convert annotated_image to OpenCV format (from PIL)
70
+ annotated_image_cv = cv2.cvtColor(np.array(annotated_image), cv2.COLOR_RGB2BGR)
71
+
72
+ # Draw counts on the annotated image using cv2.putText
73
+ y_offset = 30 # Starting y offset for text
74
+ for label, count in counts.items():
75
+ text = f"{label}: {count}"
76
+ cv2.putText(annotated_image_cv, text, (10, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2, cv2.LINE_AA)
77
+ y_offset += 25 # Increase y offset for the next label
78
+
79
+ # Convert back to PIL for Gradio output
80
+ return Image.fromarray(cv2.cvtColor(annotated_image_cv, cv2.COLOR_BGR2RGB))
81
+
82
+ # Gradio app function
83
+ def app():
84
+ with gr.Blocks():
85
+ with gr.Row():
86
+ with gr.Column():
87
+ image = gr.Image(type="pil", label="Image", interactive=True)
88
+ model_id = gr.Dropdown(label="Model", choices=model_filenames, value=model_filenames[0] if model_filenames else "")
89
+ conf_threshold = gr.Slider(label="Confidence Threshold", minimum=0.1, maximum=1.0, step=0.1, value=0.25)
90
+ iou_threshold = gr.Slider(label="IoU Threshold", minimum=0.1, maximum=1.0, step=0.1, value=0.45)
91
+ max_detection = gr.Slider(label="Max Detection", minimum=1, maximum=300, step=1, value=300)
92
+ yolov_infer = gr.Button(value="Detect Objects")
93
+ with gr.Column():
94
+ output_image = gr.Image(type="pil", label="Annotated Image", interactive=False)
95
+ yolov_infer.click(fn=yolo_inference, inputs=[image, model_id, conf_threshold, iou_threshold, max_detection], outputs=[output_image])
96
+
97
+ # Main Gradio app
98
+ gradio_app = gr.Blocks()
99
+ with gradio_app:
100
+ gr.HTML("<h1 style='text-align: center'>Object Counting using YoloV11</h1>")
101
+ gr.HTML("<p style='text-align: center'>Upload an image to run inference. By Kelvin</p>")
102
+ with gr.Row():
103
+ with gr.Column():
104
+ app()
105
+
106
+ # gradio_app.launch(debug=True)
107
+ gradio_app.launch()
108
+