Spaces:
No application file
No application file
metadata
title: FastAPI Image Classification with VGG16
emoji: π
colorFrom: indigo
colorTo: purple
sdk: docker
python_version: '3.9'
sdk_version: '1.0'
suggested_hardware: cpu-upgrade
suggested_storage: medium
app_file: your_script_name.py
app_port: 8000
base_path: /
fullWidth: true
header: default
short_description: Classify images using VGG16 in FastAPI.
tags:
- image-classification
- VGG16
- FastAPI
- Docker
- deep-learning
thumbnail: http://example.com/path_to_custom_thumbnail.jpg
pinned: false
hf_oauth: false
disable_embedding: false
startup_duration_timeout: 30m
custom_headers:
cross-origin-embedder-policy: require-corp
cross-origin-opener-policy: same-origin
cross-origin-resource-policy: cross-origin
license: mit
FastAPI Image Classification with VGG16
Description
This Space uses a FastAPI application to classify images via a pre-trained VGG16 model. The application is containerized using Docker for easy deployment and scalability. Users can upload an image, and the model will classify it into one of two categories.
How to Use
Start the Docker Container:
- Build the Docker image and run it using:
docker build -t image-classification . docker run -p 8000:8000 image-classification
- Build the Docker image and run it using:
Accessing the API:
- Open your browser and go to
http://localhost:8000/docs
. - Use the
/predict/
endpoint to submit an image file and receive the classification result.
- Open your browser and go to
Requirements
- Docker
- Python 3.9
Installation
- Clone the repository:
git clone <repository-url> cd <repository-directory>