KabeerAmjad
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,22 +1,35 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import AutoModelForImageClassification, AutoFeatureExtractor
|
3 |
-
from PIL import Image
|
4 |
import torch
|
|
|
|
|
|
|
5 |
|
6 |
-
# Load the model
|
7 |
-
model_id = "KabeerAmjad/food_classification_model"
|
8 |
-
model =
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
# Define the prediction function
|
12 |
def classify_image(img):
|
13 |
-
|
|
|
|
|
|
|
14 |
with torch.no_grad():
|
15 |
-
outputs = model(
|
16 |
-
probs = torch.softmax(outputs
|
17 |
|
18 |
# Get the label with the highest probability
|
19 |
-
top_label = model.config.id2label[probs.argmax().item()]
|
20 |
return top_label
|
21 |
|
22 |
# Create the Gradio interface
|
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
import torch
|
3 |
+
from torch import nn
|
4 |
+
from torchvision import models, transforms
|
5 |
+
from PIL import Image
|
6 |
|
7 |
+
# Load the model architecture and weights
|
8 |
+
model_id = "KabeerAmjad/food_classification_model"
|
9 |
+
model = models.resnet50(pretrained=False) # Do not load the pretrained weights here
|
10 |
+
model.fc = nn.Linear(model.fc.in_features, 11) # Adjust the number of classes (replace 11 with your number of classes)
|
11 |
+
model.load_state_dict(torch.load(model_id)) # Load the model weights you uploaded
|
12 |
+
model.eval()
|
13 |
+
|
14 |
+
# Define the same preprocessing used during training
|
15 |
+
transform = transforms.Compose([
|
16 |
+
transforms.Resize((224, 224)),
|
17 |
+
transforms.ToTensor(),
|
18 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
19 |
+
])
|
20 |
|
21 |
# Define the prediction function
|
22 |
def classify_image(img):
|
23 |
+
# Preprocess the image
|
24 |
+
img = transform(img).unsqueeze(0) # Add batch dimension
|
25 |
+
|
26 |
+
# Make prediction
|
27 |
with torch.no_grad():
|
28 |
+
outputs = model(img)
|
29 |
+
probs = torch.softmax(outputs, dim=-1)
|
30 |
|
31 |
# Get the label with the highest probability
|
32 |
+
top_label = model.config.id2label[probs.argmax().item()] # Map to label (use your custom label mapping if needed)
|
33 |
return top_label
|
34 |
|
35 |
# Create the Gradio interface
|