KabeerAmjad
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,44 +1,23 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
from transformers import AutoFeatureExtractor
|
4 |
-
from torchvision import models, transforms
|
5 |
from PIL import Image
|
|
|
6 |
|
7 |
-
# Load
|
8 |
-
model_id = "KabeerAmjad/food_classification_model"
|
9 |
-
model =
|
10 |
-
model.load_state_dict(torch.load("path_to_trained_model_weights.pth")) # Load the trained weights
|
11 |
-
model.eval() # Set to evaluation mode
|
12 |
-
|
13 |
-
# Load the feature extractor (can be used if any custom preprocessing was applied)
|
14 |
feature_extractor = AutoFeatureExtractor.from_pretrained(model_id)
|
15 |
|
16 |
# Define the prediction function
|
17 |
def classify_image(img):
|
18 |
-
|
19 |
-
preprocess = transforms.Compose([
|
20 |
-
transforms.Resize((224, 224)),
|
21 |
-
transforms.RandomHorizontalFlip(),
|
22 |
-
transforms.RandomRotation(10),
|
23 |
-
transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),
|
24 |
-
transforms.ToTensor(),
|
25 |
-
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
26 |
-
])
|
27 |
-
img_tensor = preprocess(img).unsqueeze(0) # Add batch dimension
|
28 |
-
|
29 |
-
# Make prediction with the model
|
30 |
with torch.no_grad():
|
31 |
-
outputs = model(
|
32 |
-
probs = torch.softmax(outputs, dim
|
33 |
-
|
34 |
# Get the label with the highest probability
|
35 |
-
|
36 |
-
|
37 |
-
# If you have a list of class labels, use it
|
38 |
-
class_labels = ["Apple Pie", "Burger", "Pizza", "Tacos"] # Replace with your actual class labels
|
39 |
-
predicted_label = class_labels[predicted_class.item()]
|
40 |
-
|
41 |
-
return predicted_label
|
42 |
|
43 |
# Create the Gradio interface
|
44 |
iface = gr.Interface(
|
@@ -46,7 +25,7 @@ iface = gr.Interface(
|
|
46 |
inputs=gr.Image(type="pil"),
|
47 |
outputs="text",
|
48 |
title="Food Image Classification",
|
49 |
-
description="Upload an image to classify if it’s an apple pie,
|
50 |
)
|
51 |
|
52 |
# Launch the app
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModelForImageClassification, AutoFeatureExtractor
|
|
|
|
|
3 |
from PIL import Image
|
4 |
+
import torch
|
5 |
|
6 |
+
# Load the model directly from Hugging Face
|
7 |
+
model_id = "KabeerAmjad/food_classification_model"
|
8 |
+
model = AutoModelForImageClassification.from_pretrained(model_id)
|
|
|
|
|
|
|
|
|
9 |
feature_extractor = AutoFeatureExtractor.from_pretrained(model_id)
|
10 |
|
11 |
# Define the prediction function
|
12 |
def classify_image(img):
|
13 |
+
inputs = feature_extractor(images=img, return_tensors="pt")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
with torch.no_grad():
|
15 |
+
outputs = model(**inputs)
|
16 |
+
probs = torch.softmax(outputs.logits, dim=-1)
|
17 |
+
|
18 |
# Get the label with the highest probability
|
19 |
+
top_label = model.config.id2label[probs.argmax().item()]
|
20 |
+
return top_label
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
# Create the Gradio interface
|
23 |
iface = gr.Interface(
|
|
|
25 |
inputs=gr.Image(type="pil"),
|
26 |
outputs="text",
|
27 |
title="Food Image Classification",
|
28 |
+
description="Upload an image to classify if it’s an apple pie, etc."
|
29 |
)
|
30 |
|
31 |
# Launch the app
|