KabeerAmjad commited on
Commit
5cf4eea
·
verified ·
1 Parent(s): c1bde15

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -33
app.py CHANGED
@@ -1,44 +1,23 @@
1
  import gradio as gr
2
- import torch
3
- from transformers import AutoFeatureExtractor
4
- from torchvision import models, transforms
5
  from PIL import Image
 
6
 
7
- # Load your trained model from Hugging Face (if available) or load locally
8
- model_id = "KabeerAmjad/food_classification_model" # Replace with your actual model ID
9
- model = models.resnet50() # Load ResNet50 architecture
10
- model.load_state_dict(torch.load("path_to_trained_model_weights.pth")) # Load the trained weights
11
- model.eval() # Set to evaluation mode
12
-
13
- # Load the feature extractor (can be used if any custom preprocessing was applied)
14
  feature_extractor = AutoFeatureExtractor.from_pretrained(model_id)
15
 
16
  # Define the prediction function
17
  def classify_image(img):
18
- # Preprocess the image to match ResNet50's expected input format
19
- preprocess = transforms.Compose([
20
- transforms.Resize((224, 224)),
21
- transforms.RandomHorizontalFlip(),
22
- transforms.RandomRotation(10),
23
- transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),
24
- transforms.ToTensor(),
25
- transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
26
- ])
27
- img_tensor = preprocess(img).unsqueeze(0) # Add batch dimension
28
-
29
- # Make prediction with the model
30
  with torch.no_grad():
31
- outputs = model(img_tensor)
32
- probs = torch.softmax(outputs, dim=1)
33
-
34
  # Get the label with the highest probability
35
- _, predicted_class = torch.max(probs, 1)
36
-
37
- # If you have a list of class labels, use it
38
- class_labels = ["Apple Pie", "Burger", "Pizza", "Tacos"] # Replace with your actual class labels
39
- predicted_label = class_labels[predicted_class.item()]
40
-
41
- return predicted_label
42
 
43
  # Create the Gradio interface
44
  iface = gr.Interface(
@@ -46,7 +25,7 @@ iface = gr.Interface(
46
  inputs=gr.Image(type="pil"),
47
  outputs="text",
48
  title="Food Image Classification",
49
- description="Upload an image to classify if it’s an apple pie, burger, pizza, etc."
50
  )
51
 
52
  # Launch the app
 
1
  import gradio as gr
2
+ from transformers import AutoModelForImageClassification, AutoFeatureExtractor
 
 
3
  from PIL import Image
4
+ import torch
5
 
6
+ # Load the model directly from Hugging Face
7
+ model_id = "KabeerAmjad/food_classification_model"
8
+ model = AutoModelForImageClassification.from_pretrained(model_id)
 
 
 
 
9
  feature_extractor = AutoFeatureExtractor.from_pretrained(model_id)
10
 
11
  # Define the prediction function
12
  def classify_image(img):
13
+ inputs = feature_extractor(images=img, return_tensors="pt")
 
 
 
 
 
 
 
 
 
 
 
14
  with torch.no_grad():
15
+ outputs = model(**inputs)
16
+ probs = torch.softmax(outputs.logits, dim=-1)
17
+
18
  # Get the label with the highest probability
19
+ top_label = model.config.id2label[probs.argmax().item()]
20
+ return top_label
 
 
 
 
 
21
 
22
  # Create the Gradio interface
23
  iface = gr.Interface(
 
25
  inputs=gr.Image(type="pil"),
26
  outputs="text",
27
  title="Food Image Classification",
28
+ description="Upload an image to classify if it’s an apple pie, etc."
29
  )
30
 
31
  # Launch the app