Spaces:
Runtime error
Runtime error
pseudotensor
commited on
Commit
·
0539589
1
Parent(s):
eeb7ca1
Update with h2oGPT hash 3513278043665f503945eb05d56c1ec1152d1006
Browse files- generate.py +31 -15
- gpt_langchain.py +40 -8
- gradio_runner.py +8 -6
- requirements.txt +2 -1
- utils.py +0 -1
generate.py
CHANGED
@@ -33,7 +33,6 @@ from typing import Union
|
|
33 |
|
34 |
import fire
|
35 |
import torch
|
36 |
-
from peft import PeftModel
|
37 |
from transformers import GenerationConfig, AutoModel, TextIteratorStreamer
|
38 |
from accelerate import init_empty_weights, infer_auto_device_map
|
39 |
|
@@ -710,6 +709,7 @@ def get_model(
|
|
710 |
base_model,
|
711 |
**model_kwargs
|
712 |
)
|
|
|
713 |
model = PeftModel.from_pretrained(
|
714 |
model,
|
715 |
lora_weights,
|
@@ -727,6 +727,7 @@ def get_model(
|
|
727 |
base_model,
|
728 |
**model_kwargs
|
729 |
)
|
|
|
730 |
model = PeftModel.from_pretrained(
|
731 |
model,
|
732 |
lora_weights,
|
@@ -827,24 +828,27 @@ no_default_param_names = [
|
|
827 |
'iinput_nochat',
|
828 |
]
|
829 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
830 |
eval_func_param_names = ['instruction',
|
831 |
'iinput',
|
832 |
'context',
|
833 |
'stream_output',
|
834 |
'prompt_type',
|
835 |
-
'prompt_dict'
|
836 |
-
|
837 |
-
|
838 |
-
'top_k',
|
839 |
-
'num_beams',
|
840 |
-
'max_new_tokens',
|
841 |
-
'min_new_tokens',
|
842 |
-
'early_stopping',
|
843 |
-
'max_time',
|
844 |
-
'repetition_penalty',
|
845 |
-
'num_return_sequences',
|
846 |
-
'do_sample',
|
847 |
-
'chat',
|
848 |
'instruction_nochat',
|
849 |
'iinput_nochat',
|
850 |
'langchain_mode',
|
@@ -900,6 +904,9 @@ def evaluate_from_str(
|
|
900 |
# only used for submit_nochat_api
|
901 |
user_kwargs['chat'] = False
|
902 |
user_kwargs['stream_output'] = False
|
|
|
|
|
|
|
903 |
|
904 |
assert set(list(default_kwargs.keys())) == set(eval_func_param_names)
|
905 |
# correct ordering. Note some things may not be in default_kwargs, so can't be default of user_kwargs.get()
|
@@ -1083,7 +1090,6 @@ def evaluate(
|
|
1083 |
db=db1,
|
1084 |
user_path=user_path,
|
1085 |
detect_user_path_changes_every_query=detect_user_path_changes_every_query,
|
1086 |
-
max_new_tokens=max_new_tokens,
|
1087 |
cut_distanct=1.1 if langchain_mode in ['wiki_full'] else 1.64, # FIXME, too arbitrary
|
1088 |
use_openai_embedding=use_openai_embedding,
|
1089 |
use_openai_model=use_openai_model,
|
@@ -1096,10 +1102,20 @@ def evaluate(
|
|
1096 |
document_choice=document_choice,
|
1097 |
db_type=db_type,
|
1098 |
top_k_docs=top_k_docs,
|
|
|
|
|
|
|
1099 |
temperature=temperature,
|
1100 |
repetition_penalty=repetition_penalty,
|
1101 |
top_k=top_k,
|
1102 |
top_p=top_p,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1103 |
prompt_type=prompt_type,
|
1104 |
prompt_dict=prompt_dict,
|
1105 |
n_jobs=n_jobs,
|
|
|
33 |
|
34 |
import fire
|
35 |
import torch
|
|
|
36 |
from transformers import GenerationConfig, AutoModel, TextIteratorStreamer
|
37 |
from accelerate import init_empty_weights, infer_auto_device_map
|
38 |
|
|
|
709 |
base_model,
|
710 |
**model_kwargs
|
711 |
)
|
712 |
+
from peft import PeftModel # loads cuda, so avoid in global scope
|
713 |
model = PeftModel.from_pretrained(
|
714 |
model,
|
715 |
lora_weights,
|
|
|
727 |
base_model,
|
728 |
**model_kwargs
|
729 |
)
|
730 |
+
from peft import PeftModel # loads cuda, so avoid in global scope
|
731 |
model = PeftModel.from_pretrained(
|
732 |
model,
|
733 |
lora_weights,
|
|
|
828 |
'iinput_nochat',
|
829 |
]
|
830 |
|
831 |
+
gen_hyper = ['temperature',
|
832 |
+
'top_p',
|
833 |
+
'top_k',
|
834 |
+
'num_beams',
|
835 |
+
'max_new_tokens',
|
836 |
+
'min_new_tokens',
|
837 |
+
'early_stopping',
|
838 |
+
'max_time',
|
839 |
+
'repetition_penalty',
|
840 |
+
'num_return_sequences',
|
841 |
+
'do_sample',
|
842 |
+
]
|
843 |
+
|
844 |
eval_func_param_names = ['instruction',
|
845 |
'iinput',
|
846 |
'context',
|
847 |
'stream_output',
|
848 |
'prompt_type',
|
849 |
+
'prompt_dict'] + \
|
850 |
+
gen_hyper + \
|
851 |
+
['chat',
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
852 |
'instruction_nochat',
|
853 |
'iinput_nochat',
|
854 |
'langchain_mode',
|
|
|
904 |
# only used for submit_nochat_api
|
905 |
user_kwargs['chat'] = False
|
906 |
user_kwargs['stream_output'] = False
|
907 |
+
if 'langchain_mode' not in user_kwargs:
|
908 |
+
# if user doesn't specify, then assume disabled, not use default
|
909 |
+
user_kwargs['langchain_mode'] = 'Disabled'
|
910 |
|
911 |
assert set(list(default_kwargs.keys())) == set(eval_func_param_names)
|
912 |
# correct ordering. Note some things may not be in default_kwargs, so can't be default of user_kwargs.get()
|
|
|
1090 |
db=db1,
|
1091 |
user_path=user_path,
|
1092 |
detect_user_path_changes_every_query=detect_user_path_changes_every_query,
|
|
|
1093 |
cut_distanct=1.1 if langchain_mode in ['wiki_full'] else 1.64, # FIXME, too arbitrary
|
1094 |
use_openai_embedding=use_openai_embedding,
|
1095 |
use_openai_model=use_openai_model,
|
|
|
1102 |
document_choice=document_choice,
|
1103 |
db_type=db_type,
|
1104 |
top_k_docs=top_k_docs,
|
1105 |
+
|
1106 |
+
# gen_hyper:
|
1107 |
+
do_sample=do_sample,
|
1108 |
temperature=temperature,
|
1109 |
repetition_penalty=repetition_penalty,
|
1110 |
top_k=top_k,
|
1111 |
top_p=top_p,
|
1112 |
+
num_beams=num_beams,
|
1113 |
+
min_new_tokens=min_new_tokens,
|
1114 |
+
max_new_tokens=max_new_tokens,
|
1115 |
+
early_stopping=early_stopping,
|
1116 |
+
max_time=max_time,
|
1117 |
+
num_return_sequences=num_return_sequences,
|
1118 |
+
|
1119 |
prompt_type=prompt_type,
|
1120 |
prompt_dict=prompt_dict,
|
1121 |
n_jobs=n_jobs,
|
gpt_langchain.py
CHANGED
@@ -22,6 +22,7 @@ from langchain.embeddings import HuggingFaceInstructEmbeddings
|
|
22 |
from tqdm import tqdm
|
23 |
|
24 |
from enums import DocumentChoices
|
|
|
25 |
from prompter import non_hf_types, PromptType
|
26 |
from utils import wrapped_partial, EThread, import_matplotlib, sanitize_filename, makedirs, get_url, flatten_list, \
|
27 |
get_device, ProgressParallel, remove, hash_file, clear_torch_cache
|
@@ -261,11 +262,17 @@ def get_answer_from_sources(chain, sources, question):
|
|
261 |
|
262 |
def get_llm(use_openai_model=False, model_name=None, model=None,
|
263 |
tokenizer=None, stream_output=False,
|
264 |
-
|
265 |
temperature=0.1,
|
266 |
-
repetition_penalty=1.0,
|
267 |
top_k=40,
|
268 |
top_p=0.7,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
269 |
prompt_type=None,
|
270 |
prompt_dict=None,
|
271 |
prompter=None,
|
@@ -312,10 +319,20 @@ def get_llm(use_openai_model=False, model_name=None, model=None,
|
|
312 |
load_in_8bit=load_8bit)
|
313 |
|
314 |
max_max_tokens = tokenizer.model_max_length
|
315 |
-
gen_kwargs = dict(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
316 |
return_full_text=True,
|
317 |
-
early_stopping=False,
|
318 |
handle_long_generation='hole')
|
|
|
319 |
|
320 |
if stream_output:
|
321 |
skip_prompt = False
|
@@ -1235,11 +1252,17 @@ def _run_qa_db(query=None,
|
|
1235 |
show_rank=False,
|
1236 |
load_db_if_exists=False,
|
1237 |
db=None,
|
1238 |
-
|
1239 |
temperature=0.1,
|
1240 |
-
repetition_penalty=1.0,
|
1241 |
top_k=40,
|
1242 |
top_p=0.7,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1243 |
langchain_mode=None,
|
1244 |
document_choice=[DocumentChoices.All_Relevant.name],
|
1245 |
n_jobs=-1,
|
@@ -1274,14 +1297,21 @@ def _run_qa_db(query=None,
|
|
1274 |
assert prompt_dict is not None # should at least be {} or ''
|
1275 |
else:
|
1276 |
prompt_dict = ''
|
|
|
1277 |
llm, model_name, streamer, prompt_type_out = get_llm(use_openai_model=use_openai_model, model_name=model_name,
|
1278 |
model=model, tokenizer=tokenizer,
|
1279 |
stream_output=stream_output,
|
1280 |
-
|
1281 |
temperature=temperature,
|
1282 |
-
repetition_penalty=repetition_penalty,
|
1283 |
top_k=top_k,
|
1284 |
top_p=top_p,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1285 |
prompt_type=prompt_type,
|
1286 |
prompt_dict=prompt_dict,
|
1287 |
prompter=prompter,
|
@@ -1609,6 +1639,7 @@ def get_some_dbs_from_hf(dest='.', db_zips=None):
|
|
1609 |
assert os.path.isdir(os.path.join(dest, dir_expected)), "Missing path for %s" % dir_expected
|
1610 |
assert os.path.isdir(os.path.join(dest, dir_expected, 'index')), "Missing index in %s" % dir_expected
|
1611 |
|
|
|
1612 |
def _create_local_weaviate_client():
|
1613 |
WEAVIATE_URL = os.getenv('WEAVIATE_URL', "http://localhost:8080")
|
1614 |
WEAVIATE_USERNAME = os.getenv('WEAVIATE_USERNAME')
|
@@ -1629,5 +1660,6 @@ def _create_local_weaviate_client():
|
|
1629 |
print(f"Failed to create Weaviate client: {e}")
|
1630 |
return None
|
1631 |
|
|
|
1632 |
if __name__ == '__main__':
|
1633 |
pass
|
|
|
22 |
from tqdm import tqdm
|
23 |
|
24 |
from enums import DocumentChoices
|
25 |
+
from generate import gen_hyper
|
26 |
from prompter import non_hf_types, PromptType
|
27 |
from utils import wrapped_partial, EThread, import_matplotlib, sanitize_filename, makedirs, get_url, flatten_list, \
|
28 |
get_device, ProgressParallel, remove, hash_file, clear_torch_cache
|
|
|
262 |
|
263 |
def get_llm(use_openai_model=False, model_name=None, model=None,
|
264 |
tokenizer=None, stream_output=False,
|
265 |
+
do_sample=False,
|
266 |
temperature=0.1,
|
|
|
267 |
top_k=40,
|
268 |
top_p=0.7,
|
269 |
+
num_beams=1,
|
270 |
+
max_new_tokens=256,
|
271 |
+
min_new_tokens=1,
|
272 |
+
early_stopping=False,
|
273 |
+
max_time=180,
|
274 |
+
repetition_penalty=1.0,
|
275 |
+
num_return_sequences=1,
|
276 |
prompt_type=None,
|
277 |
prompt_dict=None,
|
278 |
prompter=None,
|
|
|
319 |
load_in_8bit=load_8bit)
|
320 |
|
321 |
max_max_tokens = tokenizer.model_max_length
|
322 |
+
gen_kwargs = dict(do_sample=do_sample,
|
323 |
+
temperature=temperature,
|
324 |
+
top_k=top_k,
|
325 |
+
top_p=top_p,
|
326 |
+
num_beams=num_beams,
|
327 |
+
max_new_tokens=max_new_tokens,
|
328 |
+
min_new_tokens=min_new_tokens,
|
329 |
+
early_stopping=early_stopping,
|
330 |
+
max_time=max_time,
|
331 |
+
repetition_penalty=repetition_penalty,
|
332 |
+
num_return_sequences=num_return_sequences,
|
333 |
return_full_text=True,
|
|
|
334 |
handle_long_generation='hole')
|
335 |
+
assert len(set(gen_hyper).difference(gen_kwargs.keys())) == 0
|
336 |
|
337 |
if stream_output:
|
338 |
skip_prompt = False
|
|
|
1252 |
show_rank=False,
|
1253 |
load_db_if_exists=False,
|
1254 |
db=None,
|
1255 |
+
do_sample=False,
|
1256 |
temperature=0.1,
|
|
|
1257 |
top_k=40,
|
1258 |
top_p=0.7,
|
1259 |
+
num_beams=1,
|
1260 |
+
max_new_tokens=256,
|
1261 |
+
min_new_tokens=1,
|
1262 |
+
early_stopping=False,
|
1263 |
+
max_time=180,
|
1264 |
+
repetition_penalty=1.0,
|
1265 |
+
num_return_sequences=1,
|
1266 |
langchain_mode=None,
|
1267 |
document_choice=[DocumentChoices.All_Relevant.name],
|
1268 |
n_jobs=-1,
|
|
|
1297 |
assert prompt_dict is not None # should at least be {} or ''
|
1298 |
else:
|
1299 |
prompt_dict = ''
|
1300 |
+
assert len(set(gen_hyper).difference(inspect.signature(get_llm).parameters)) == 0
|
1301 |
llm, model_name, streamer, prompt_type_out = get_llm(use_openai_model=use_openai_model, model_name=model_name,
|
1302 |
model=model, tokenizer=tokenizer,
|
1303 |
stream_output=stream_output,
|
1304 |
+
do_sample=do_sample,
|
1305 |
temperature=temperature,
|
|
|
1306 |
top_k=top_k,
|
1307 |
top_p=top_p,
|
1308 |
+
num_beams=num_beams,
|
1309 |
+
max_new_tokens=max_new_tokens,
|
1310 |
+
min_new_tokens=min_new_tokens,
|
1311 |
+
early_stopping=early_stopping,
|
1312 |
+
max_time=max_time,
|
1313 |
+
repetition_penalty=repetition_penalty,
|
1314 |
+
num_return_sequences=num_return_sequences,
|
1315 |
prompt_type=prompt_type,
|
1316 |
prompt_dict=prompt_dict,
|
1317 |
prompter=prompter,
|
|
|
1639 |
assert os.path.isdir(os.path.join(dest, dir_expected)), "Missing path for %s" % dir_expected
|
1640 |
assert os.path.isdir(os.path.join(dest, dir_expected, 'index')), "Missing index in %s" % dir_expected
|
1641 |
|
1642 |
+
|
1643 |
def _create_local_weaviate_client():
|
1644 |
WEAVIATE_URL = os.getenv('WEAVIATE_URL', "http://localhost:8080")
|
1645 |
WEAVIATE_USERNAME = os.getenv('WEAVIATE_USERNAME')
|
|
|
1660 |
print(f"Failed to create Weaviate client: {e}")
|
1661 |
return None
|
1662 |
|
1663 |
+
|
1664 |
if __name__ == '__main__':
|
1665 |
pass
|
gradio_runner.py
CHANGED
@@ -649,7 +649,7 @@ def go_gradio(**kwargs):
|
|
649 |
inputs=[fileup_output, my_db_state, add_to_shared_db_btn, add_to_my_db_btn,
|
650 |
chunk, chunk_size],
|
651 |
outputs=[add_to_shared_db_btn, add_to_my_db_btn, sources_text], queue=queue,
|
652 |
-
api_name='add_to_shared' if allow_api else None) \
|
653 |
.then(clear_file_list, outputs=fileup_output, queue=queue) \
|
654 |
.then(update_radio_to_user, inputs=None, outputs=langchain_mode, queue=False)
|
655 |
|
@@ -664,7 +664,7 @@ def go_gradio(**kwargs):
|
|
664 |
inputs=[url_text, my_db_state, add_to_shared_db_btn, add_to_my_db_btn,
|
665 |
chunk, chunk_size],
|
666 |
outputs=[add_to_shared_db_btn, add_to_my_db_btn, sources_text], queue=queue,
|
667 |
-
api_name='add_url_to_shared' if allow_api else None) \
|
668 |
.then(clear_textbox, outputs=url_text, queue=queue) \
|
669 |
.then(update_radio_to_user, inputs=None, outputs=langchain_mode, queue=False)
|
670 |
|
@@ -673,7 +673,7 @@ def go_gradio(**kwargs):
|
|
673 |
inputs=[user_text_text, my_db_state, add_to_shared_db_btn, add_to_my_db_btn,
|
674 |
chunk, chunk_size],
|
675 |
outputs=[add_to_shared_db_btn, add_to_my_db_btn, sources_text], queue=queue,
|
676 |
-
api_name='add_text_to_shared' if allow_api else None) \
|
677 |
.then(clear_textbox, outputs=user_text_text, queue=queue) \
|
678 |
.then(update_radio_to_user, inputs=None, outputs=langchain_mode, queue=False)
|
679 |
|
@@ -695,7 +695,7 @@ def go_gradio(**kwargs):
|
|
695 |
inputs=[fileup_output, my_db_state, add_to_shared_db_btn, add_to_my_db_btn,
|
696 |
chunk, chunk_size],
|
697 |
outputs=[my_db_state, add_to_shared_db_btn, add_to_my_db_btn, sources_text], queue=queue,
|
698 |
-
api_name='add_to_my' if allow_api else None) \
|
699 |
.then(clear_file_list, outputs=fileup_output, queue=queue) \
|
700 |
.then(update_radio_to_my, inputs=None, outputs=langchain_mode, queue=False)
|
701 |
# .then(make_invisible, outputs=add_to_shared_db_btn, queue=queue)
|
@@ -706,7 +706,7 @@ def go_gradio(**kwargs):
|
|
706 |
inputs=[url_text, my_db_state, add_to_shared_db_btn, add_to_my_db_btn,
|
707 |
chunk, chunk_size],
|
708 |
outputs=[my_db_state, add_to_shared_db_btn, add_to_my_db_btn, sources_text], queue=queue,
|
709 |
-
api_name='add_url_to_my' if allow_api else None) \
|
710 |
.then(clear_textbox, outputs=url_text, queue=queue) \
|
711 |
.then(update_radio_to_my, inputs=None, outputs=langchain_mode, queue=False)
|
712 |
|
@@ -715,7 +715,7 @@ def go_gradio(**kwargs):
|
|
715 |
inputs=[user_text_text, my_db_state, add_to_shared_db_btn, add_to_my_db_btn,
|
716 |
chunk, chunk_size],
|
717 |
outputs=[my_db_state, add_to_shared_db_btn, add_to_my_db_btn, sources_text], queue=queue,
|
718 |
-
api_name='add_txt_to_my' if allow_api else None) \
|
719 |
.then(clear_textbox, outputs=user_text_text, queue=queue) \
|
720 |
.then(update_radio_to_my, inputs=None, outputs=langchain_mode, queue=False)
|
721 |
|
@@ -1788,6 +1788,8 @@ def get_db(db1, langchain_mode, dbs=None):
|
|
1788 |
|
1789 |
def get_source_files_given_langchain_mode(db1, langchain_mode='UserData', dbs=None):
|
1790 |
db = get_db(db1, langchain_mode, dbs=dbs)
|
|
|
|
|
1791 |
return get_source_files(db=db, exceptions=None)
|
1792 |
|
1793 |
|
|
|
649 |
inputs=[fileup_output, my_db_state, add_to_shared_db_btn, add_to_my_db_btn,
|
650 |
chunk, chunk_size],
|
651 |
outputs=[add_to_shared_db_btn, add_to_my_db_btn, sources_text], queue=queue,
|
652 |
+
api_name='add_to_shared' if allow_api and allow_upload_to_user_data else None) \
|
653 |
.then(clear_file_list, outputs=fileup_output, queue=queue) \
|
654 |
.then(update_radio_to_user, inputs=None, outputs=langchain_mode, queue=False)
|
655 |
|
|
|
664 |
inputs=[url_text, my_db_state, add_to_shared_db_btn, add_to_my_db_btn,
|
665 |
chunk, chunk_size],
|
666 |
outputs=[add_to_shared_db_btn, add_to_my_db_btn, sources_text], queue=queue,
|
667 |
+
api_name='add_url_to_shared' if allow_api and allow_upload_to_user_data else None) \
|
668 |
.then(clear_textbox, outputs=url_text, queue=queue) \
|
669 |
.then(update_radio_to_user, inputs=None, outputs=langchain_mode, queue=False)
|
670 |
|
|
|
673 |
inputs=[user_text_text, my_db_state, add_to_shared_db_btn, add_to_my_db_btn,
|
674 |
chunk, chunk_size],
|
675 |
outputs=[add_to_shared_db_btn, add_to_my_db_btn, sources_text], queue=queue,
|
676 |
+
api_name='add_text_to_shared' if allow_api and allow_upload_to_user_data else None) \
|
677 |
.then(clear_textbox, outputs=user_text_text, queue=queue) \
|
678 |
.then(update_radio_to_user, inputs=None, outputs=langchain_mode, queue=False)
|
679 |
|
|
|
695 |
inputs=[fileup_output, my_db_state, add_to_shared_db_btn, add_to_my_db_btn,
|
696 |
chunk, chunk_size],
|
697 |
outputs=[my_db_state, add_to_shared_db_btn, add_to_my_db_btn, sources_text], queue=queue,
|
698 |
+
api_name='add_to_my' if allow_api and allow_upload_to_my_data else None) \
|
699 |
.then(clear_file_list, outputs=fileup_output, queue=queue) \
|
700 |
.then(update_radio_to_my, inputs=None, outputs=langchain_mode, queue=False)
|
701 |
# .then(make_invisible, outputs=add_to_shared_db_btn, queue=queue)
|
|
|
706 |
inputs=[url_text, my_db_state, add_to_shared_db_btn, add_to_my_db_btn,
|
707 |
chunk, chunk_size],
|
708 |
outputs=[my_db_state, add_to_shared_db_btn, add_to_my_db_btn, sources_text], queue=queue,
|
709 |
+
api_name='add_url_to_my' if allow_api and allow_upload_to_my_data else None) \
|
710 |
.then(clear_textbox, outputs=url_text, queue=queue) \
|
711 |
.then(update_radio_to_my, inputs=None, outputs=langchain_mode, queue=False)
|
712 |
|
|
|
715 |
inputs=[user_text_text, my_db_state, add_to_shared_db_btn, add_to_my_db_btn,
|
716 |
chunk, chunk_size],
|
717 |
outputs=[my_db_state, add_to_shared_db_btn, add_to_my_db_btn, sources_text], queue=queue,
|
718 |
+
api_name='add_txt_to_my' if allow_api and allow_upload_to_my_data else None) \
|
719 |
.then(clear_textbox, outputs=user_text_text, queue=queue) \
|
720 |
.then(update_radio_to_my, inputs=None, outputs=langchain_mode, queue=False)
|
721 |
|
|
|
1788 |
|
1789 |
def get_source_files_given_langchain_mode(db1, langchain_mode='UserData', dbs=None):
|
1790 |
db = get_db(db1, langchain_mode, dbs=dbs)
|
1791 |
+
if langchain_mode in ['ChatLLM', 'LLM'] or db is None:
|
1792 |
+
return "Sources: N/A"
|
1793 |
return get_source_files(db=db, exceptions=None)
|
1794 |
|
1795 |
|
requirements.txt
CHANGED
@@ -56,7 +56,8 @@ einops==0.6.1
|
|
56 |
instructorembedding==1.0.1
|
57 |
|
58 |
# for gpt4all .env file, but avoid worrying about imports
|
59 |
-
python-dotenv==1.0.0
|
|
|
60 |
langchain==0.0.193
|
61 |
pypdf==3.8.1
|
62 |
tiktoken==0.3.3
|
|
|
56 |
instructorembedding==1.0.1
|
57 |
|
58 |
# for gpt4all .env file, but avoid worrying about imports
|
59 |
+
python-dotenv==1.0.0
|
60 |
+
# optional for chat with PDF
|
61 |
langchain==0.0.193
|
62 |
pypdf==3.8.1
|
63 |
tiktoken==0.3.3
|
utils.py
CHANGED
@@ -14,7 +14,6 @@ import time
|
|
14 |
import traceback
|
15 |
import zipfile
|
16 |
from datetime import datetime
|
17 |
-
from enum import Enum
|
18 |
|
19 |
import filelock
|
20 |
import requests, uuid
|
|
|
14 |
import traceback
|
15 |
import zipfile
|
16 |
from datetime import datetime
|
|
|
17 |
|
18 |
import filelock
|
19 |
import requests, uuid
|