Research-chatbot / utils_langchain.py
pseudotensor's picture
Update with h2oGPT hash 236c95819e80ab122193bfb843b55618ae285c39
1e8c453
raw
history blame
2.21 kB
from typing import Any, Dict, List, Union, Optional
import time
import queue
from langchain.callbacks.base import BaseCallbackHandler
from langchain.schema import LLMResult
class StreamingGradioCallbackHandler(BaseCallbackHandler):
"""
Similar to H2OTextIteratorStreamer that is for HF backend, but here LangChain backend
"""
def __init__(self, timeout: Optional[float] = None, block=True):
super().__init__()
self.text_queue = queue.SimpleQueue()
self.stop_signal = None
self.do_stop = False
self.timeout = timeout
self.block = block
def on_llm_start(
self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
) -> None:
"""Run when LLM starts running. Clean the queue."""
while not self.text_queue.empty():
try:
self.text_queue.get(block=False)
except queue.Empty:
continue
def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
"""Run on new LLM token. Only available when streaming is enabled."""
self.text_queue.put(token)
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
"""Run when LLM ends running."""
self.text_queue.put(self.stop_signal)
def on_llm_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
"""Run when LLM errors."""
self.text_queue.put(self.stop_signal)
def __iter__(self):
return self
def __next__(self):
while True:
try:
value = self.stop_signal # value looks unused in pycharm, not true
if self.do_stop:
print("hit stop", flush=True)
# could raise or break, maybe best to raise and make parent see if any exception in thread
raise StopIteration()
# break
value = self.text_queue.get(block=self.block, timeout=self.timeout)
break
except queue.Empty:
time.sleep(0.01)
if value == self.stop_signal:
raise StopIteration()
else:
return value