Spaces:
Runtime error
Runtime error
import ast | |
import copy | |
import functools | |
import inspect | |
import itertools | |
import json | |
import os | |
import pprint | |
import random | |
import shutil | |
import sys | |
import time | |
import traceback | |
import typing | |
import uuid | |
import filelock | |
import pandas as pd | |
import requests | |
import tabulate | |
from iterators import TimeoutIterator | |
from gradio_utils.css import get_css | |
from gradio_utils.prompt_form import make_prompt_form, make_chatbots | |
# This is a hack to prevent Gradio from phoning home when it gets imported | |
os.environ['GRADIO_ANALYTICS_ENABLED'] = 'False' | |
def my_get(url, **kwargs): | |
print('Gradio HTTP request redirected to localhost :)', flush=True) | |
kwargs.setdefault('allow_redirects', True) | |
return requests.api.request('get', 'http://127.0.0.1/', **kwargs) | |
original_get = requests.get | |
requests.get = my_get | |
import gradio as gr | |
requests.get = original_get | |
def fix_pydantic_duplicate_validators_error(): | |
try: | |
from pydantic import class_validators | |
class_validators.in_ipython = lambda: True # type: ignore[attr-defined] | |
except ImportError: | |
pass | |
fix_pydantic_duplicate_validators_error() | |
from enums import DocumentChoices, no_model_str, no_lora_str, no_server_str, LangChainAction, LangChainMode | |
from gradio_themes import H2oTheme, SoftTheme, get_h2o_title, get_simple_title, get_dark_js, spacing_xsm, radius_xsm, \ | |
text_xsm | |
from prompter import prompt_type_to_model_name, prompt_types_strings, inv_prompt_type_to_model_lower, non_hf_types, \ | |
get_prompt | |
from utils import get_githash, flatten_list, zip_data, s3up, clear_torch_cache, get_torch_allocated, system_info_print, \ | |
ping, get_short_name, get_url, makedirs, get_kwargs, remove, system_info, ping_gpu | |
from src.gen import get_model, languages_covered, evaluate, eval_func_param_names, score_qa, langchain_modes, \ | |
inputs_kwargs_list, scratch_base_dir, no_default_param_names, \ | |
eval_func_param_names_defaults, get_max_max_new_tokens, get_minmax_top_k_docs, history_to_context, langchain_actions | |
from apscheduler.schedulers.background import BackgroundScheduler | |
def fix_text_for_gradio(text, fix_new_lines=False, fix_latex_dollars=True): | |
if fix_latex_dollars: | |
ts = text.split('```') | |
for parti, part in enumerate(ts): | |
inside = parti % 2 == 1 | |
if not inside: | |
ts[parti] = ts[parti].replace('$', '﹩') | |
text = '```'.join(ts) | |
if fix_new_lines: | |
# let Gradio handle code, since got improved recently | |
## FIXME: below conflicts with Gradio, but need to see if can handle multiple \n\n\n etc. properly as is. | |
# ensure good visually, else markdown ignores multiple \n | |
# handle code blocks | |
ts = text.split('```') | |
for parti, part in enumerate(ts): | |
inside = parti % 2 == 1 | |
if not inside: | |
ts[parti] = ts[parti].replace('\n', '<br>') | |
text = '```'.join(ts) | |
return text | |
def go_gradio(**kwargs): | |
allow_api = kwargs['allow_api'] | |
is_public = kwargs['is_public'] | |
is_hf = kwargs['is_hf'] | |
memory_restriction_level = kwargs['memory_restriction_level'] | |
n_gpus = kwargs['n_gpus'] | |
admin_pass = kwargs['admin_pass'] | |
model_state0 = kwargs['model_state0'] | |
model_states = kwargs['model_states'] | |
score_model_state0 = kwargs['score_model_state0'] | |
dbs = kwargs['dbs'] | |
db_type = kwargs['db_type'] | |
visible_langchain_modes = kwargs['visible_langchain_modes'] | |
visible_langchain_actions = kwargs['visible_langchain_actions'] | |
allow_upload_to_user_data = kwargs['allow_upload_to_user_data'] | |
allow_upload_to_my_data = kwargs['allow_upload_to_my_data'] | |
enable_sources_list = kwargs['enable_sources_list'] | |
enable_url_upload = kwargs['enable_url_upload'] | |
enable_text_upload = kwargs['enable_text_upload'] | |
use_openai_embedding = kwargs['use_openai_embedding'] | |
hf_embedding_model = kwargs['hf_embedding_model'] | |
enable_captions = kwargs['enable_captions'] | |
captions_model = kwargs['captions_model'] | |
enable_ocr = kwargs['enable_ocr'] | |
caption_loader = kwargs['caption_loader'] | |
# easy update of kwargs needed for evaluate() etc. | |
queue = True | |
allow_upload = allow_upload_to_user_data or allow_upload_to_my_data | |
kwargs.update(locals()) | |
if 'mbart-' in kwargs['model_lower']: | |
instruction_label_nochat = "Text to translate" | |
else: | |
instruction_label_nochat = "Instruction (Shift-Enter or push Submit to send message," \ | |
" use Enter for multiple input lines)" | |
title = 'h2oGPT' | |
more_info = """<iframe src="https://ghbtns.com/github-btn.html?user=h2oai&repo=h2ogpt&type=star&count=true&size=small" frameborder="0" scrolling="0" width="250" height="20" title="GitHub"></iframe><small><a href="https://github.com/h2oai/h2ogpt">h2oGPT</a> <a href="https://github.com/h2oai/h2o-llmstudio">H2O LLM Studio</a><br><a href="https://huggingface.co/h2oai">🤗 Models</a>""" | |
if kwargs['verbose']: | |
description = f"""Model {kwargs['base_model']} Instruct dataset. | |
For more information, visit our GitHub pages: [h2oGPT](https://github.com/h2oai/h2ogpt) and [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio). | |
Command: {str(' '.join(sys.argv))} | |
Hash: {get_githash()} | |
""" | |
else: | |
description = more_info | |
description_bottom = "If this host is busy, try [LLaMa 65B](https://llama.h2o.ai), [Falcon 40B](https://gpt.h2o.ai), [Falcon 40B](http://falcon.h2o.ai), [HF Spaces1 12B](https://huggingface.co/spaces/h2oai/h2ogpt-chatbot) or [HF Spaces2 12B](https://huggingface.co/spaces/h2oai/h2ogpt-chatbot2)<br>" | |
description_bottom += """<p>By using h2oGPT, you accept our [Terms of Service](https://github.com/h2oai/h2ogpt/blob/main/docs/tos.md)</p>""" | |
if is_hf: | |
description_bottom += '''<a href="https://huggingface.co/spaces/h2oai/h2ogpt-chatbot?duplicate=true"><img src="https://bit.ly/3gLdBN6" style="white-space: nowrap" alt="Duplicate Space"></a>''' | |
if kwargs['verbose']: | |
task_info_md = f""" | |
### Task: {kwargs['task_info']}""" | |
else: | |
task_info_md = '' | |
css_code = get_css(kwargs) | |
if kwargs['gradio_offline_level'] >= 0: | |
# avoid GoogleFont that pulls from internet | |
if kwargs['gradio_offline_level'] == 1: | |
# front end would still have to download fonts or have cached it at some point | |
base_font = 'Source Sans Pro' | |
else: | |
base_font = 'Helvetica' | |
theme_kwargs = dict(font=(base_font, 'ui-sans-serif', 'system-ui', 'sans-serif'), | |
font_mono=('IBM Plex Mono', 'ui-monospace', 'Consolas', 'monospace')) | |
else: | |
theme_kwargs = dict() | |
if kwargs['gradio_size'] == 'xsmall': | |
theme_kwargs.update(dict(spacing_size=spacing_xsm, text_size=text_xsm, radius_size=radius_xsm)) | |
elif kwargs['gradio_size'] == 'small': | |
theme_kwargs.update(dict(spacing_size=gr.themes.sizes.spacing_sm, text_size=gr.themes.sizes.text_sm, | |
radius_size=gr.themes.sizes.spacing_sm)) | |
elif kwargs['gradio_size'] == 'large': | |
theme_kwargs.update(dict(spacing_size=gr.themes.sizes.spacing_lg, text_size=gr.themes.sizes.text_lg), | |
radius_size=gr.themes.sizes.spacing_lg) | |
elif kwargs['gradio_size'] == 'medium': | |
theme_kwargs.update(dict(spacing_size=gr.themes.sizes.spacing_md, text_size=gr.themes.sizes.text_md, | |
radius_size=gr.themes.sizes.spacing_md)) | |
theme = H2oTheme(**theme_kwargs) if kwargs['h2ocolors'] else SoftTheme(**theme_kwargs) | |
demo = gr.Blocks(theme=theme, css=css_code, title="h2oGPT", analytics_enabled=False) | |
callback = gr.CSVLogger() | |
model_options = flatten_list(list(prompt_type_to_model_name.values())) + kwargs['extra_model_options'] | |
if kwargs['base_model'].strip() not in model_options: | |
model_options = [kwargs['base_model'].strip()] + model_options | |
lora_options = kwargs['extra_lora_options'] | |
if kwargs['lora_weights'].strip() not in lora_options: | |
lora_options = [kwargs['lora_weights'].strip()] + lora_options | |
server_options = kwargs['extra_server_options'] | |
if kwargs['inference_server'].strip() not in server_options: | |
server_options = [kwargs['inference_server'].strip()] + server_options | |
if os.getenv('OPENAI_API_KEY'): | |
if 'openai_chat' not in server_options: | |
server_options += ['openai_chat'] | |
if 'openai' not in server_options: | |
server_options += ['openai'] | |
# always add in no lora case | |
# add fake space so doesn't go away in gradio dropdown | |
model_options = [no_model_str] + model_options | |
lora_options = [no_lora_str] + lora_options | |
server_options = [no_server_str] + server_options | |
# always add in no model case so can free memory | |
# add fake space so doesn't go away in gradio dropdown | |
# transcribe, will be detranscribed before use by evaluate() | |
if not kwargs['base_model'].strip(): | |
kwargs['base_model'] = no_model_str | |
if not kwargs['lora_weights'].strip(): | |
kwargs['lora_weights'] = no_lora_str | |
if not kwargs['inference_server'].strip(): | |
kwargs['inference_server'] = no_server_str | |
# transcribe for gradio | |
kwargs['gpu_id'] = str(kwargs['gpu_id']) | |
no_model_msg = 'h2oGPT [ !!! Please Load Model in Models Tab !!! ]' | |
output_label0 = f'h2oGPT [Model: {kwargs.get("base_model")}]' if kwargs.get( | |
'base_model') else no_model_msg | |
output_label0_model2 = no_model_msg | |
def update_prompt(prompt_type1, prompt_dict1, model_state1, which_model=0): | |
if not prompt_type1 or which_model != 0: | |
# keep prompt_type and prompt_dict in sync if possible | |
prompt_type1 = kwargs.get('prompt_type', prompt_type1) | |
prompt_dict1 = kwargs.get('prompt_dict', prompt_dict1) | |
# prefer model specific prompt type instead of global one | |
if not prompt_type1 or which_model != 0: | |
prompt_type1 = model_state1.get('prompt_type', prompt_type1) | |
prompt_dict1 = model_state1.get('prompt_dict', prompt_dict1) | |
if not prompt_dict1 or which_model != 0: | |
# if still not defined, try to get | |
prompt_dict1 = kwargs.get('prompt_dict', prompt_dict1) | |
if not prompt_dict1 or which_model != 0: | |
prompt_dict1 = model_state1.get('prompt_dict', prompt_dict1) | |
return prompt_type1, prompt_dict1 | |
default_kwargs = {k: kwargs[k] for k in eval_func_param_names_defaults} | |
# ensure prompt_type consistent with prep_bot(), so nochat API works same way | |
default_kwargs['prompt_type'], default_kwargs['prompt_dict'] = \ | |
update_prompt(default_kwargs['prompt_type'], default_kwargs['prompt_dict'], | |
model_state1=model_state0, which_model=0) | |
for k in no_default_param_names: | |
default_kwargs[k] = '' | |
def dummy_fun(x): | |
# need dummy function to block new input from being sent until output is done, | |
# else gets input_list at time of submit that is old, and shows up as truncated in chatbot | |
return x | |
with demo: | |
# avoid actual model/tokenizer here or anything that would be bad to deepcopy | |
# https://github.com/gradio-app/gradio/issues/3558 | |
model_state = gr.State( | |
dict(model='model', tokenizer='tokenizer', device=kwargs['device'], | |
base_model=kwargs['base_model'], | |
tokenizer_base_model=kwargs['tokenizer_base_model'], | |
lora_weights=kwargs['lora_weights'], | |
inference_server=kwargs['inference_server'], | |
prompt_type=kwargs['prompt_type'], | |
prompt_dict=kwargs['prompt_dict'], | |
) | |
) | |
model_state2 = gr.State(kwargs['model_state_none'].copy()) | |
model_options_state = gr.State([model_options]) | |
lora_options_state = gr.State([lora_options]) | |
server_options_state = gr.State([server_options]) | |
# uuid in db is used as user ID | |
my_db_state = gr.State([None, str(uuid.uuid4())]) | |
chat_state = gr.State({}) | |
# make user default first and default choice, dedup | |
docs_state00 = kwargs['document_choice'] + [x.name for x in list(DocumentChoices)] | |
docs_state0 = [] | |
[docs_state0.append(x) for x in docs_state00 if x not in docs_state0] | |
docs_state = gr.State(docs_state0) # first is chosen as default | |
gr.Markdown(f""" | |
{get_h2o_title(title, description) if kwargs['h2ocolors'] else get_simple_title(title, description)} | |
""") | |
# go button visible if | |
base_wanted = kwargs['base_model'] != no_model_str and kwargs['login_mode_if_model0'] | |
go_btn = gr.Button(value="ENTER", visible=base_wanted, variant="primary") | |
nas = ' '.join(['NA'] * len(kwargs['model_states'])) | |
res_value = "Response Score: NA" if not kwargs[ | |
'model_lock'] else "Response Scores: %s" % nas | |
normal_block = gr.Row(visible=not base_wanted) | |
with normal_block: | |
with gr.Tabs(): | |
with gr.Row(): | |
col_nochat = gr.Column(visible=not kwargs['chat']) | |
with col_nochat: # FIXME: for model comparison, and check rest | |
if kwargs['langchain_mode'] == 'Disabled': | |
text_output_nochat = gr.Textbox(lines=5, label=output_label0, show_copy_button=True) | |
else: | |
# text looks a bit worse, but HTML links work | |
text_output_nochat = gr.HTML(label=output_label0) | |
instruction_nochat = gr.Textbox( | |
lines=kwargs['input_lines'], | |
label=instruction_label_nochat, | |
placeholder=kwargs['placeholder_instruction'], | |
) | |
iinput_nochat = gr.Textbox(lines=4, label="Input context for Instruction", | |
placeholder=kwargs['placeholder_input']) | |
submit_nochat = gr.Button("Submit") | |
flag_btn_nochat = gr.Button("Flag") | |
with gr.Column(visible=kwargs['score_model']): | |
score_text_nochat = gr.Textbox("Response Score: NA", show_label=False) | |
col_chat = gr.Column(visible=kwargs['chat']) | |
with col_chat: | |
instruction, submit, stop_btn = make_prompt_form(kwargs) | |
text_output, text_output2, text_outputs = make_chatbots(output_label0, output_label0_model2, | |
**kwargs) | |
with gr.Row(): | |
clear = gr.Button("Save Chat / New Chat") | |
flag_btn = gr.Button("Flag") | |
with gr.Column(visible=kwargs['score_model']): | |
score_text = gr.Textbox(res_value, | |
show_label=False, | |
visible=True) | |
score_text2 = gr.Textbox("Response Score2: NA", show_label=False, | |
visible=False and not kwargs['model_lock']) | |
retry_btn = gr.Button("Regenerate") | |
undo = gr.Button("Undo") | |
submit_nochat_api = gr.Button("Submit nochat API", visible=False) | |
inputs_dict_str = gr.Textbox(label='API input for nochat', show_label=False, visible=False) | |
text_output_nochat_api = gr.Textbox(lines=5, label='API nochat output', visible=False, | |
show_copy_button=True) | |
with gr.TabItem("Documents"): | |
langchain_readme = get_url('https://github.com/h2oai/h2ogpt/blob/main/docs/README_LangChain.md', | |
from_str=True) | |
gr.HTML(value=f"""LangChain Support Disabled<p> | |
Run:<p> | |
<code> | |
python generate.py --langchain_mode=MyData | |
</code> | |
<p> | |
For more options see: {langchain_readme}""", | |
visible=kwargs['langchain_mode'] == 'Disabled', interactive=False) | |
data_row1 = gr.Row(visible=kwargs['langchain_mode'] != 'Disabled') | |
with data_row1: | |
if is_hf: | |
# don't show 'wiki' since only usually useful for internal testing at moment | |
no_show_modes = ['Disabled', 'wiki'] | |
else: | |
no_show_modes = ['Disabled'] | |
allowed_modes = visible_langchain_modes.copy() | |
allowed_modes = [x for x in allowed_modes if x in dbs] | |
allowed_modes += ['ChatLLM', 'LLM'] | |
if allow_upload_to_my_data and 'MyData' not in allowed_modes: | |
allowed_modes += ['MyData'] | |
if allow_upload_to_user_data and 'UserData' not in allowed_modes: | |
allowed_modes += ['UserData'] | |
langchain_mode = gr.Radio( | |
[x for x in langchain_modes if x in allowed_modes and x not in no_show_modes], | |
value=kwargs['langchain_mode'], | |
label="Data Collection of Sources", | |
visible=kwargs['langchain_mode'] != 'Disabled') | |
allowed_actions = [x for x in langchain_actions if x in visible_langchain_actions] | |
langchain_action = gr.Radio( | |
allowed_actions, | |
value=allowed_actions[0] if len(allowed_actions) > 0 else None, | |
label="Data Action", | |
visible=True) | |
data_row2 = gr.Row(visible=kwargs['langchain_mode'] != 'Disabled') | |
with data_row2: | |
with gr.Column(scale=50): | |
document_choice = gr.Dropdown(docs_state.value, | |
label="Choose Subset of Doc(s) in Collection [click get sources to update]", | |
value=docs_state.value[0], | |
interactive=True, | |
multiselect=True, | |
) | |
with gr.Row(visible=kwargs['langchain_mode'] != 'Disabled' and enable_sources_list): | |
get_sources_btn = gr.Button(value="Get Sources", scale=0, size='sm') | |
show_sources_btn = gr.Button(value="Show Sources", scale=0, size='sm') | |
refresh_sources_btn = gr.Button(value="Refresh Sources", scale=0, size='sm') | |
# import control | |
if kwargs['langchain_mode'] != 'Disabled': | |
from gpt_langchain import file_types, have_arxiv | |
else: | |
have_arxiv = False | |
file_types = [] | |
upload_row = gr.Row(visible=kwargs['langchain_mode'] != 'Disabled' and allow_upload, | |
equal_height=False) | |
with upload_row: | |
with gr.Column(): | |
file_types_str = '[' + ' '.join(file_types) + ']' | |
fileup_output = gr.File(label=f'Upload {file_types_str}', | |
file_types=file_types, | |
file_count="multiple", | |
elem_id="warning", elem_classes="feedback") | |
with gr.Row(): | |
add_to_shared_db_btn = gr.Button("Add File(s) to UserData", | |
visible=allow_upload_to_user_data, | |
elem_id='small_btn') | |
add_to_my_db_btn = gr.Button("Add File(s) to Scratch MyData", | |
visible=allow_upload_to_my_data and | |
allow_upload_to_user_data, | |
elem_id='small_btn' if allow_upload_to_user_data else None, | |
size='sm' if not allow_upload_to_user_data else None) | |
with gr.Column( | |
visible=kwargs['langchain_mode'] != 'Disabled' and allow_upload and enable_url_upload): | |
url_label = 'URL (http/https) or ArXiv:' if have_arxiv else 'URL (http/https)' | |
url_text = gr.Textbox(label=url_label, | |
placeholder="Click Add to Submit" if | |
allow_upload_to_my_data and | |
allow_upload_to_user_data else | |
"Enter to Submit", | |
max_lines=1, | |
interactive=True) | |
with gr.Row(): | |
url_user_btn = gr.Button(value='Add URL content to Shared UserData', | |
visible=allow_upload_to_user_data and allow_upload_to_my_data, | |
elem_id='small_btn') | |
url_my_btn = gr.Button(value='Add URL content to Scratch MyData', | |
visible=allow_upload_to_my_data and allow_upload_to_user_data, | |
elem_id='small_btn' if allow_upload_to_user_data else None, | |
size='sm' if not allow_upload_to_user_data else None) | |
with gr.Column( | |
visible=kwargs['langchain_mode'] != 'Disabled' and allow_upload and enable_text_upload): | |
user_text_text = gr.Textbox(label='Paste Text [Shift-Enter more lines]', | |
placeholder="Click Add to Submit" if | |
allow_upload_to_my_data and | |
allow_upload_to_user_data else | |
"Enter to Submit, Shift-Enter for more lines", | |
interactive=True) | |
with gr.Row(): | |
user_text_user_btn = gr.Button(value='Add Text to Shared UserData', | |
visible=allow_upload_to_user_data and allow_upload_to_my_data, | |
elem_id='small_btn') | |
user_text_my_btn = gr.Button(value='Add Text to Scratch MyData', | |
visible=allow_upload_to_my_data and allow_upload_to_user_data, | |
elem_id='small_btn' if allow_upload_to_user_data else None, | |
size='sm' if not allow_upload_to_user_data else None) | |
with gr.Column(visible=False): | |
# WIP: | |
with gr.Row(visible=False, equal_height=False): | |
github_textbox = gr.Textbox(label="Github URL") | |
with gr.Row(visible=True): | |
github_shared_btn = gr.Button(value="Add Github to Shared UserData", | |
visible=allow_upload_to_user_data, | |
elem_id='small_btn') | |
github_my_btn = gr.Button(value="Add Github to Scratch MyData", | |
visible=allow_upload_to_my_data, elem_id='small_btn') | |
sources_row = gr.Row(visible=kwargs['langchain_mode'] != 'Disabled' and enable_sources_list, | |
equal_height=False) | |
with sources_row: | |
with gr.Column(scale=1): | |
file_source = gr.File(interactive=False, | |
label="Download File w/Sources [click get sources to make file]") | |
with gr.Column(scale=2): | |
sources_text = gr.HTML(label='Sources Added', interactive=False) | |
with gr.TabItem("Chat History"): | |
with gr.Row(): | |
if 'mbart-' in kwargs['model_lower']: | |
src_lang = gr.Dropdown(list(languages_covered().keys()), | |
value=kwargs['src_lang'], | |
label="Input Language") | |
tgt_lang = gr.Dropdown(list(languages_covered().keys()), | |
value=kwargs['tgt_lang'], | |
label="Output Language") | |
radio_chats = gr.Radio(value=None, label="Saved Chats", visible=True, interactive=True, | |
type='value') | |
with gr.Row(): | |
clear_chat_btn = gr.Button(value="Clear Chat", visible=True, size='sm') | |
export_chats_btn = gr.Button(value="Export Chats to Download", size='sm') | |
remove_chat_btn = gr.Button(value="Remove Selected Chat", visible=True, size='sm') | |
add_to_chats_btn = gr.Button("Import Chats from Upload", size='sm') | |
with gr.Row(): | |
chats_file = gr.File(interactive=False, label="Download Exported Chats") | |
chatsup_output = gr.File(label="Upload Chat File(s)", | |
file_types=['.json'], | |
file_count='multiple', | |
elem_id="warning", elem_classes="feedback") | |
with gr.TabItem("Expert"): | |
with gr.Row(): | |
with gr.Column(): | |
stream_output = gr.components.Checkbox(label="Stream output", | |
value=kwargs['stream_output']) | |
prompt_type = gr.Dropdown(prompt_types_strings, | |
value=kwargs['prompt_type'], label="Prompt Type", | |
visible=not kwargs['model_lock'], | |
interactive=not is_public, | |
) | |
prompt_type2 = gr.Dropdown(prompt_types_strings, | |
value=kwargs['prompt_type'], label="Prompt Type Model 2", | |
visible=False and not kwargs['model_lock'], | |
interactive=not is_public) | |
do_sample = gr.Checkbox(label="Sample", | |
info="Enable sampler, required for use of temperature, top_p, top_k", | |
value=kwargs['do_sample']) | |
temperature = gr.Slider(minimum=0.01, maximum=2, | |
value=kwargs['temperature'], | |
label="Temperature", | |
info="Lower is deterministic (but may lead to repeats), Higher more creative (but may lead to hallucinations)") | |
top_p = gr.Slider(minimum=1e-3, maximum=1.0 - 1e-3, | |
value=kwargs['top_p'], label="Top p", | |
info="Cumulative probability of tokens to sample from") | |
top_k = gr.Slider( | |
minimum=1, maximum=100, step=1, | |
value=kwargs['top_k'], label="Top k", | |
info='Num. tokens to sample from' | |
) | |
# FIXME: https://github.com/h2oai/h2ogpt/issues/106 | |
if os.getenv('TESTINGFAIL'): | |
max_beams = 8 if not (memory_restriction_level or is_public) else 1 | |
else: | |
max_beams = 1 | |
num_beams = gr.Slider(minimum=1, maximum=max_beams, step=1, | |
value=min(max_beams, kwargs['num_beams']), label="Beams", | |
info="Number of searches for optimal overall probability. " | |
"Uses more GPU memory/compute", | |
interactive=False) | |
max_max_new_tokens = get_max_max_new_tokens(model_state0, **kwargs) | |
max_new_tokens = gr.Slider( | |
minimum=1, maximum=max_max_new_tokens, step=1, | |
value=min(max_max_new_tokens, kwargs['max_new_tokens']), label="Max output length", | |
) | |
min_new_tokens = gr.Slider( | |
minimum=0, maximum=max_max_new_tokens, step=1, | |
value=min(max_max_new_tokens, kwargs['min_new_tokens']), label="Min output length", | |
) | |
max_new_tokens2 = gr.Slider( | |
minimum=1, maximum=max_max_new_tokens, step=1, | |
value=min(max_max_new_tokens, kwargs['max_new_tokens']), label="Max output length 2", | |
visible=False and not kwargs['model_lock'], | |
) | |
min_new_tokens2 = gr.Slider( | |
minimum=0, maximum=max_max_new_tokens, step=1, | |
value=min(max_max_new_tokens, kwargs['min_new_tokens']), label="Min output length 2", | |
visible=False and not kwargs['model_lock'], | |
) | |
early_stopping = gr.Checkbox(label="EarlyStopping", info="Stop early in beam search", | |
value=kwargs['early_stopping']) | |
max_time = gr.Slider(minimum=0, maximum=kwargs['max_max_time'], step=1, | |
value=min(kwargs['max_max_time'], | |
kwargs['max_time']), label="Max. time", | |
info="Max. time to search optimal output.") | |
repetition_penalty = gr.Slider(minimum=0.01, maximum=3.0, | |
value=kwargs['repetition_penalty'], | |
label="Repetition Penalty") | |
num_return_sequences = gr.Slider(minimum=1, maximum=10, step=1, | |
value=kwargs['num_return_sequences'], | |
label="Number Returns", info="Must be <= num_beams", | |
interactive=not is_public) | |
iinput = gr.Textbox(lines=4, label="Input", | |
placeholder=kwargs['placeholder_input'], | |
interactive=not is_public) | |
context = gr.Textbox(lines=3, label="System Pre-Context", | |
info="Directly pre-appended without prompt processing", | |
interactive=not is_public) | |
chat = gr.components.Checkbox(label="Chat mode", value=kwargs['chat'], | |
visible=not kwargs['model_lock'], | |
interactive=not is_public, | |
) | |
count_chat_tokens_btn = gr.Button(value="Count Chat Tokens", | |
visible=not is_public and not kwargs['model_lock'], | |
interactive=not is_public) | |
chat_token_count = gr.Textbox(label="Chat Token Count", value=None, | |
visible=not is_public and not kwargs['model_lock'], | |
interactive=False) | |
chunk = gr.components.Checkbox(value=kwargs['chunk'], | |
label="Whether to chunk documents", | |
info="For LangChain", | |
visible=kwargs['langchain_mode'] != 'Disabled', | |
interactive=not is_public) | |
min_top_k_docs, max_top_k_docs, label_top_k_docs = get_minmax_top_k_docs(is_public) | |
top_k_docs = gr.Slider(minimum=min_top_k_docs, maximum=max_top_k_docs, step=1, | |
value=kwargs['top_k_docs'], | |
label=label_top_k_docs, | |
info="For LangChain", | |
visible=kwargs['langchain_mode'] != 'Disabled', | |
interactive=not is_public) | |
chunk_size = gr.Number(value=kwargs['chunk_size'], | |
label="Chunk size for document chunking", | |
info="For LangChain (ignored if chunk=False)", | |
minimum=128, | |
maximum=2048, | |
visible=kwargs['langchain_mode'] != 'Disabled', | |
interactive=not is_public, | |
precision=0) | |
with gr.TabItem("Models"): | |
model_lock_msg = gr.Textbox(lines=1, label="Model Lock Notice", | |
placeholder="Started in model_lock mode, no model changes allowed.", | |
visible=bool(kwargs['model_lock']), interactive=False) | |
load_msg = "Load-Unload Model/LORA [unload works if did not use --base_model]" if not is_public \ | |
else "LOAD-UNLOAD DISABLED FOR HOSTED DEMO" | |
load_msg2 = "Load-Unload Model/LORA 2 [unload works if did not use --base_model]" if not is_public \ | |
else "LOAD-UNLOAD DISABLED FOR HOSTED DEMO 2" | |
variant_load_msg = 'primary' if not is_public else 'secondary' | |
compare_checkbox = gr.components.Checkbox(label="Compare Mode", | |
value=kwargs['model_lock'], | |
visible=not is_public and not kwargs['model_lock']) | |
with gr.Row(): | |
n_gpus_list = [str(x) for x in list(range(-1, n_gpus))] | |
with gr.Column(): | |
with gr.Row(): | |
with gr.Column(scale=20, visible=not kwargs['model_lock']): | |
model_choice = gr.Dropdown(model_options_state.value[0], label="Choose Model", | |
value=kwargs['base_model']) | |
lora_choice = gr.Dropdown(lora_options_state.value[0], label="Choose LORA", | |
value=kwargs['lora_weights'], visible=kwargs['show_lora']) | |
server_choice = gr.Dropdown(server_options_state.value[0], label="Choose Server", | |
value=kwargs['inference_server'], visible=not is_public) | |
with gr.Column(scale=1, visible=not kwargs['model_lock']): | |
load_model_button = gr.Button(load_msg, variant=variant_load_msg, scale=0, | |
size='sm', interactive=not is_public) | |
model_load8bit_checkbox = gr.components.Checkbox( | |
label="Load 8-bit [requires support]", | |
value=kwargs['load_8bit'], interactive=not is_public) | |
model_infer_devices_checkbox = gr.components.Checkbox( | |
label="Choose Devices [If not Checked, use all GPUs]", | |
value=kwargs['infer_devices'], interactive=not is_public) | |
model_gpu = gr.Dropdown(n_gpus_list, | |
label="GPU ID [-1 = all GPUs, if Choose is enabled]", | |
value=kwargs['gpu_id'], interactive=not is_public) | |
model_used = gr.Textbox(label="Current Model", value=kwargs['base_model'], | |
interactive=False) | |
lora_used = gr.Textbox(label="Current LORA", value=kwargs['lora_weights'], | |
visible=kwargs['show_lora'], interactive=False) | |
server_used = gr.Textbox(label="Current Server", | |
value=kwargs['inference_server'], | |
visible=bool(kwargs['inference_server']) and not is_public, | |
interactive=False) | |
prompt_dict = gr.Textbox(label="Prompt (or Custom)", | |
value=pprint.pformat(kwargs['prompt_dict'], indent=4), | |
interactive=not is_public, lines=4) | |
col_model2 = gr.Column(visible=False) | |
with col_model2: | |
with gr.Row(): | |
with gr.Column(scale=20, visible=not kwargs['model_lock']): | |
model_choice2 = gr.Dropdown(model_options_state.value[0], label="Choose Model 2", | |
value=no_model_str) | |
lora_choice2 = gr.Dropdown(lora_options_state.value[0], label="Choose LORA 2", | |
value=no_lora_str, | |
visible=kwargs['show_lora']) | |
server_choice2 = gr.Dropdown(server_options_state.value[0], label="Choose Server 2", | |
value=no_server_str, | |
visible=not is_public) | |
with gr.Column(scale=1, visible=not kwargs['model_lock']): | |
load_model_button2 = gr.Button(load_msg2, variant=variant_load_msg, scale=0, | |
size='sm', interactive=not is_public) | |
model_load8bit_checkbox2 = gr.components.Checkbox( | |
label="Load 8-bit 2 [requires support]", | |
value=kwargs['load_8bit'], interactive=not is_public) | |
model_infer_devices_checkbox2 = gr.components.Checkbox( | |
label="Choose Devices 2 [If not Checked, use all GPUs]", | |
value=kwargs[ | |
'infer_devices'], interactive=not is_public) | |
model_gpu2 = gr.Dropdown(n_gpus_list, | |
label="GPU ID 2 [-1 = all GPUs, if choose is enabled]", | |
value=kwargs['gpu_id'], interactive=not is_public) | |
# no model/lora loaded ever in model2 by default | |
model_used2 = gr.Textbox(label="Current Model 2", value=no_model_str, | |
interactive=False) | |
lora_used2 = gr.Textbox(label="Current LORA 2", value=no_lora_str, | |
visible=kwargs['show_lora'], interactive=False) | |
server_used2 = gr.Textbox(label="Current Server 2", value=no_server_str, | |
interactive=False, | |
visible=not is_public) | |
prompt_dict2 = gr.Textbox(label="Prompt (or Custom) 2", | |
value=pprint.pformat(kwargs['prompt_dict'], indent=4), | |
interactive=not is_public, lines=4) | |
with gr.Row(visible=not kwargs['model_lock']): | |
with gr.Column(scale=50): | |
new_model = gr.Textbox(label="New Model name/path", interactive=not is_public) | |
with gr.Column(scale=50): | |
new_lora = gr.Textbox(label="New LORA name/path", visible=kwargs['show_lora'], | |
interactive=not is_public) | |
with gr.Column(scale=50): | |
new_server = gr.Textbox(label="New Server url:port", interactive=not is_public) | |
with gr.Row(): | |
add_model_lora_server_button = gr.Button("Add new Model, Lora, Server url:port", scale=0, | |
size='sm', interactive=not is_public) | |
with gr.TabItem("System"): | |
admin_row = gr.Row() | |
with admin_row: | |
admin_pass_textbox = gr.Textbox(label="Admin Password", type='password', visible=is_public) | |
admin_btn = gr.Button(value="Admin Access", visible=is_public) | |
system_row = gr.Row(visible=not is_public) | |
with system_row: | |
with gr.Column(): | |
with gr.Row(): | |
system_btn = gr.Button(value='Get System Info') | |
system_text = gr.Textbox(label='System Info', interactive=False, show_copy_button=True) | |
with gr.Row(): | |
system_input = gr.Textbox(label='System Info Dict Password', interactive=True, | |
visible=not is_public) | |
system_btn2 = gr.Button(value='Get System Info Dict', visible=not is_public) | |
system_text2 = gr.Textbox(label='System Info Dict', interactive=False, | |
visible=not is_public, show_copy_button=True) | |
with gr.Row(): | |
system_btn3 = gr.Button(value='Get Hash', visible=not is_public) | |
system_text3 = gr.Textbox(label='Hash', interactive=False, | |
visible=not is_public, show_copy_button=True) | |
with gr.Row(): | |
zip_btn = gr.Button("Zip") | |
zip_text = gr.Textbox(label="Zip file name", interactive=False) | |
file_output = gr.File(interactive=False, label="Zip file to Download") | |
with gr.Row(): | |
s3up_btn = gr.Button("S3UP") | |
s3up_text = gr.Textbox(label='S3UP result', interactive=False) | |
with gr.TabItem("Disclaimers"): | |
description = "" | |
description += """<p><b> DISCLAIMERS: </b><ul><i><li>The model was trained on The Pile and other data, which may contain objectionable content. Use at own risk.</i></li>""" | |
if kwargs['load_8bit']: | |
description += """<i><li> Model is loaded in 8-bit and has other restrictions on this host. UX can be worse than non-hosted version.</i></li>""" | |
description += """<i><li>Conversations may be used to improve h2oGPT. Do not share sensitive information.</i></li>""" | |
if 'h2ogpt-research' in kwargs['base_model']: | |
description += """<i><li>Research demonstration only, not used for commercial purposes.</i></li>""" | |
description += """<i><li>By using h2oGPT, you accept our <a href="https://github.com/h2oai/h2ogpt/blob/main/docs/tos.md">Terms of Service</a></i></li></ul></p>""" | |
gr.Markdown(value=description, show_label=False, interactive=False) | |
gr.Markdown(f""" | |
{description_bottom} | |
{task_info_md} | |
""") | |
# Get flagged data | |
zip_data1 = functools.partial(zip_data, root_dirs=['flagged_data_points', kwargs['save_dir']]) | |
zip_btn.click(zip_data1, inputs=None, outputs=[file_output, zip_text], queue=False, | |
api_name='zip_data' if allow_api else None) | |
s3up_btn.click(s3up, inputs=zip_text, outputs=s3up_text, queue=False, | |
api_name='s3up_data' if allow_api else None) | |
def clear_file_list(): | |
return None | |
def make_non_interactive(*args): | |
if len(args) == 1: | |
return gr.update(interactive=False) | |
else: | |
return tuple([gr.update(interactive=False)] * len(args)) | |
def make_interactive(*args): | |
if len(args) == 1: | |
return gr.update(interactive=True) | |
else: | |
return tuple([gr.update(interactive=True)] * len(args)) | |
# Add to UserData | |
update_user_db_func = functools.partial(update_user_db, | |
dbs=dbs, db_type=db_type, langchain_mode='UserData', | |
use_openai_embedding=use_openai_embedding, | |
hf_embedding_model=hf_embedding_model, | |
enable_captions=enable_captions, | |
captions_model=captions_model, | |
enable_ocr=enable_ocr, | |
caption_loader=caption_loader, | |
verbose=kwargs['verbose'], | |
user_path=kwargs['user_path'], | |
) | |
add_file_outputs = [fileup_output, langchain_mode, add_to_shared_db_btn, add_to_my_db_btn] | |
add_file_kwargs = dict(fn=update_user_db_func, | |
inputs=[fileup_output, my_db_state, add_to_shared_db_btn, | |
add_to_my_db_btn, | |
chunk, chunk_size], | |
outputs=add_file_outputs + [sources_text], | |
queue=queue, | |
api_name='add_to_shared' if allow_api and allow_upload_to_user_data else None) | |
if allow_upload_to_user_data and not allow_upload_to_my_data: | |
func1 = fileup_output.change | |
else: | |
func1 = add_to_shared_db_btn.click | |
# then no need for add buttons, only single changeable db | |
eventdb1a = func1(make_non_interactive, inputs=add_file_outputs, outputs=add_file_outputs, | |
show_progress='minimal') | |
eventdb1 = eventdb1a.then(**add_file_kwargs, show_progress='minimal') | |
eventdb1.then(make_interactive, inputs=add_file_outputs, outputs=add_file_outputs, show_progress='minimal') | |
# note for update_user_db_func output is ignored for db | |
def clear_textbox(): | |
return gr.Textbox.update(value='') | |
update_user_db_url_func = functools.partial(update_user_db_func, is_url=True) | |
add_url_outputs = [url_text, langchain_mode, url_user_btn, url_my_btn] | |
add_url_kwargs = dict(fn=update_user_db_url_func, | |
inputs=[url_text, my_db_state, url_user_btn, url_my_btn, | |
chunk, chunk_size], | |
outputs=add_url_outputs + [sources_text], | |
queue=queue, | |
api_name='add_url_to_shared' if allow_api and allow_upload_to_user_data else None) | |
if allow_upload_to_user_data and not allow_upload_to_my_data: | |
func2 = url_text.submit | |
else: | |
func2 = url_user_btn.click | |
eventdb2a = func2(fn=dummy_fun, inputs=url_text, outputs=url_text, queue=queue, | |
show_progress='minimal') | |
# work around https://github.com/gradio-app/gradio/issues/4733 | |
eventdb2b = eventdb2a.then(make_non_interactive, inputs=add_url_outputs, outputs=add_url_outputs, | |
show_progress='minimal') | |
eventdb2 = eventdb2b.then(**add_url_kwargs, show_progress='minimal') | |
eventdb2.then(make_interactive, inputs=add_url_outputs, outputs=add_url_outputs, show_progress='minimal') | |
update_user_db_txt_func = functools.partial(update_user_db_func, is_txt=True) | |
add_text_outputs = [user_text_text, langchain_mode, user_text_user_btn, user_text_my_btn] | |
add_text_kwargs = dict(fn=update_user_db_txt_func, | |
inputs=[user_text_text, my_db_state, user_text_user_btn, user_text_my_btn, | |
chunk, chunk_size], | |
outputs=add_text_outputs + [sources_text], | |
queue=queue, | |
api_name='add_text_to_shared' if allow_api and allow_upload_to_user_data else None | |
) | |
if allow_upload_to_user_data and not allow_upload_to_my_data: | |
func3 = user_text_text.submit | |
else: | |
func3 = user_text_user_btn.click | |
eventdb3a = func3(fn=dummy_fun, inputs=user_text_text, outputs=user_text_text, queue=queue, | |
show_progress='minimal') | |
eventdb3b = eventdb3a.then(make_non_interactive, inputs=add_text_outputs, outputs=add_text_outputs, | |
show_progress='minimal') | |
eventdb3 = eventdb3b.then(**add_text_kwargs, show_progress='minimal') | |
eventdb3.then(make_interactive, inputs=add_text_outputs, outputs=add_text_outputs, | |
show_progress='minimal') | |
update_my_db_func = functools.partial(update_user_db, dbs=dbs, db_type=db_type, langchain_mode='MyData', | |
use_openai_embedding=use_openai_embedding, | |
hf_embedding_model=hf_embedding_model, | |
enable_captions=enable_captions, | |
captions_model=captions_model, | |
enable_ocr=enable_ocr, | |
caption_loader=caption_loader, | |
verbose=kwargs['verbose'], | |
user_path=kwargs['user_path'], | |
) | |
add_my_file_outputs = [fileup_output, langchain_mode, my_db_state, add_to_shared_db_btn, add_to_my_db_btn] | |
add_my_file_kwargs = dict(fn=update_my_db_func, | |
inputs=[fileup_output, my_db_state, add_to_shared_db_btn, add_to_my_db_btn, | |
chunk, chunk_size], | |
outputs=add_my_file_outputs + [sources_text], | |
queue=queue, | |
api_name='add_to_my' if allow_api and allow_upload_to_my_data else None) | |
if not allow_upload_to_user_data and allow_upload_to_my_data: | |
func4 = fileup_output.change | |
else: | |
func4 = add_to_my_db_btn.click | |
eventdb4a = func4(make_non_interactive, inputs=add_my_file_outputs, | |
outputs=add_my_file_outputs, | |
show_progress='minimal') | |
eventdb4 = eventdb4a.then(**add_my_file_kwargs, show_progress='minimal') | |
eventdb4.then(make_interactive, inputs=add_my_file_outputs, outputs=add_my_file_outputs, | |
show_progress='minimal') | |
update_my_db_url_func = functools.partial(update_my_db_func, is_url=True) | |
add_my_url_outputs = [url_text, langchain_mode, my_db_state, url_user_btn, url_my_btn] | |
add_my_url_kwargs = dict(fn=update_my_db_url_func, | |
inputs=[url_text, my_db_state, url_user_btn, url_my_btn, | |
chunk, chunk_size], | |
outputs=add_my_url_outputs + [sources_text], | |
queue=queue, | |
api_name='add_url_to_my' if allow_api and allow_upload_to_my_data else None) | |
if not allow_upload_to_user_data and allow_upload_to_my_data: | |
func5 = url_text.submit | |
else: | |
func5 = url_my_btn.click | |
eventdb5a = func5(fn=dummy_fun, inputs=url_text, outputs=url_text, queue=queue, | |
show_progress='minimal') | |
eventdb5b = eventdb5a.then(make_non_interactive, inputs=add_my_url_outputs, outputs=add_my_url_outputs, | |
show_progress='minimal') | |
eventdb5 = eventdb5b.then(**add_my_url_kwargs, show_progress='minimal') | |
eventdb5.then(make_interactive, inputs=add_my_url_outputs, outputs=add_my_url_outputs, | |
show_progress='minimal') | |
update_my_db_txt_func = functools.partial(update_my_db_func, is_txt=True) | |
add_my_text_outputs = [user_text_text, langchain_mode, my_db_state, user_text_user_btn, | |
user_text_my_btn] | |
add_my_text_kwargs = dict(fn=update_my_db_txt_func, | |
inputs=[user_text_text, my_db_state, user_text_user_btn, user_text_my_btn, | |
chunk, chunk_size], | |
outputs=add_my_text_outputs + [sources_text], | |
queue=queue, | |
api_name='add_txt_to_my' if allow_api and allow_upload_to_my_data else None) | |
if not allow_upload_to_user_data and allow_upload_to_my_data: | |
func6 = user_text_text.submit | |
else: | |
func6 = user_text_my_btn.click | |
eventdb6a = func6(fn=dummy_fun, inputs=user_text_text, outputs=user_text_text, queue=queue, | |
show_progress='minimal') | |
eventdb6b = eventdb6a.then(make_non_interactive, inputs=add_my_text_outputs, outputs=add_my_text_outputs, | |
show_progress='minimal') | |
eventdb6 = eventdb6b.then(**add_my_text_kwargs, show_progress='minimal') | |
eventdb6.then(make_interactive, inputs=add_my_text_outputs, outputs=add_my_text_outputs, | |
show_progress='minimal') | |
get_sources1 = functools.partial(get_sources, dbs=dbs, docs_state0=docs_state0) | |
# if change collection source, must clear doc selections from it to avoid inconsistency | |
def clear_doc_choice(): | |
return gr.Dropdown.update(choices=docs_state0, value=[docs_state0[0]]) | |
langchain_mode.change(clear_doc_choice, inputs=None, outputs=document_choice) | |
def update_dropdown(x): | |
return gr.Dropdown.update(choices=x, value=[docs_state0[0]]) | |
eventdb7 = get_sources_btn.click(get_sources1, inputs=[my_db_state, langchain_mode], | |
outputs=[file_source, docs_state], | |
queue=queue, | |
api_name='get_sources' if allow_api else None) \ | |
.then(fn=update_dropdown, inputs=docs_state, outputs=document_choice) | |
# show button, else only show when add. Could add to above get_sources for download/dropdown, but bit much maybe | |
show_sources1 = functools.partial(get_source_files_given_langchain_mode, dbs=dbs) | |
eventdb8 = show_sources_btn.click(fn=show_sources1, inputs=[my_db_state, langchain_mode], outputs=sources_text, | |
api_name='show_sources' if allow_api else None) | |
# Get inputs to evaluate() and make_db() | |
# don't deepcopy, can contain model itself | |
all_kwargs = kwargs.copy() | |
all_kwargs.update(locals()) | |
refresh_sources1 = functools.partial(update_and_get_source_files_given_langchain_mode, | |
**get_kwargs(update_and_get_source_files_given_langchain_mode, | |
exclude_names=['db1', 'langchain_mode'], | |
**all_kwargs)) | |
eventdb9 = refresh_sources_btn.click(fn=refresh_sources1, inputs=[my_db_state, langchain_mode], | |
outputs=sources_text, | |
api_name='refresh_sources' if allow_api else None) | |
def check_admin_pass(x): | |
return gr.update(visible=x == admin_pass) | |
def close_admin(x): | |
return gr.update(visible=not (x == admin_pass)) | |
admin_btn.click(check_admin_pass, inputs=admin_pass_textbox, outputs=system_row, queue=False) \ | |
.then(close_admin, inputs=admin_pass_textbox, outputs=admin_row, queue=False) | |
inputs_list, inputs_dict = get_inputs_list(all_kwargs, kwargs['model_lower'], model_id=1) | |
inputs_list2, inputs_dict2 = get_inputs_list(all_kwargs, kwargs['model_lower'], model_id=2) | |
from functools import partial | |
kwargs_evaluate = {k: v for k, v in all_kwargs.items() if k in inputs_kwargs_list} | |
# ensure present | |
for k in inputs_kwargs_list: | |
assert k in kwargs_evaluate, "Missing %s" % k | |
def evaluate_nochat(*args1, default_kwargs1=None, str_api=False, **kwargs1): | |
args_list = list(args1) | |
if str_api: | |
user_kwargs = args_list[2] | |
assert isinstance(user_kwargs, str) | |
user_kwargs = ast.literal_eval(user_kwargs) | |
else: | |
user_kwargs = {k: v for k, v in zip(eval_func_param_names, args_list[2:])} | |
# only used for submit_nochat_api | |
user_kwargs['chat'] = False | |
if 'stream_output' not in user_kwargs: | |
user_kwargs['stream_output'] = False | |
if 'langchain_mode' not in user_kwargs: | |
# if user doesn't specify, then assume disabled, not use default | |
user_kwargs['langchain_mode'] = 'Disabled' | |
if 'langchain_action' not in user_kwargs: | |
user_kwargs['langchain_action'] = LangChainAction.QUERY.value | |
set1 = set(list(default_kwargs1.keys())) | |
set2 = set(eval_func_param_names) | |
assert set1 == set2, "Set diff: %s %s: %s" % (set1, set2, set1.symmetric_difference(set2)) | |
# correct ordering. Note some things may not be in default_kwargs, so can't be default of user_kwargs.get() | |
model_state1 = args_list[0] | |
my_db_state1 = args_list[1] | |
args_list = [user_kwargs[k] if k in user_kwargs and user_kwargs[k] is not None else default_kwargs1[k] for k | |
in eval_func_param_names] | |
assert len(args_list) == len(eval_func_param_names) | |
args_list = [model_state1, my_db_state1] + args_list | |
try: | |
for res_dict in evaluate(*tuple(args_list), **kwargs1): | |
if str_api: | |
# full return of dict | |
yield res_dict | |
elif kwargs['langchain_mode'] == 'Disabled': | |
yield fix_text_for_gradio(res_dict['response']) | |
else: | |
yield '<br>' + fix_text_for_gradio(res_dict['response']) | |
finally: | |
clear_torch_cache() | |
clear_embeddings(user_kwargs['langchain_mode'], my_db_state1) | |
fun = partial(evaluate_nochat, | |
default_kwargs1=default_kwargs, | |
str_api=False, | |
**kwargs_evaluate) | |
fun2 = partial(evaluate_nochat, | |
default_kwargs1=default_kwargs, | |
str_api=False, | |
**kwargs_evaluate) | |
fun_with_dict_str = partial(evaluate_nochat, | |
default_kwargs1=default_kwargs, | |
str_api=True, | |
**kwargs_evaluate | |
) | |
dark_mode_btn = gr.Button("Dark Mode", variant="primary", size="sm") | |
# FIXME: Could add exceptions for non-chat but still streaming | |
exception_text = gr.Textbox(value="", visible=kwargs['chat'], label='Chat Exceptions', interactive=False) | |
dark_mode_btn.click( | |
None, | |
None, | |
None, | |
_js=get_dark_js(), | |
api_name="dark" if allow_api else None, | |
queue=False, | |
) | |
# Control chat and non-chat blocks, which can be independently used by chat checkbox swap | |
def col_nochat_fun(x): | |
return gr.Column.update(visible=not x) | |
def col_chat_fun(x): | |
return gr.Column.update(visible=bool(x)) | |
def context_fun(x): | |
return gr.Textbox.update(visible=not x) | |
chat.select(col_nochat_fun, chat, col_nochat, api_name="chat_checkbox" if allow_api else None) \ | |
.then(col_chat_fun, chat, col_chat) \ | |
.then(context_fun, chat, context) \ | |
.then(col_chat_fun, chat, exception_text) | |
# examples after submit or any other buttons for chat or no chat | |
if kwargs['examples'] is not None and kwargs['show_examples']: | |
gr.Examples(examples=kwargs['examples'], inputs=inputs_list) | |
# Score | |
def score_last_response(*args, nochat=False, num_model_lock=0): | |
try: | |
if num_model_lock > 0: | |
# then lock way | |
args_list = list(args).copy() | |
outputs = args_list[-num_model_lock:] | |
score_texts1 = [] | |
for output in outputs: | |
# same input, put into form good for _score_last_response() | |
args_list[-1] = output | |
score_texts1.append( | |
_score_last_response(*tuple(args_list), nochat=nochat, | |
num_model_lock=num_model_lock, prefix='')) | |
if len(score_texts1) > 1: | |
return "Response Scores: %s" % ' '.join(score_texts1) | |
else: | |
return "Response Scores: %s" % score_texts1[0] | |
else: | |
return _score_last_response(*args, nochat=nochat, num_model_lock=num_model_lock) | |
finally: | |
clear_torch_cache() | |
def _score_last_response(*args, nochat=False, num_model_lock=0, prefix='Response Score: '): | |
""" Similar to user() """ | |
args_list = list(args) | |
smodel = score_model_state0['model'] | |
stokenizer = score_model_state0['tokenizer'] | |
sdevice = score_model_state0['device'] | |
if memory_restriction_level > 0: | |
max_length_tokenize = 768 - 256 if memory_restriction_level <= 2 else 512 - 256 | |
elif hasattr(stokenizer, 'model_max_length'): | |
max_length_tokenize = stokenizer.model_max_length | |
else: | |
# limit to 1024, not worth OOMing on reward score | |
max_length_tokenize = 2048 - 1024 | |
cutoff_len = max_length_tokenize * 4 # restrict deberta related to max for LLM | |
if not nochat: | |
history = args_list[-1] | |
if history is None: | |
history = [] | |
if smodel is not None and \ | |
stokenizer is not None and \ | |
sdevice is not None and \ | |
history is not None and len(history) > 0 and \ | |
history[-1] is not None and \ | |
len(history[-1]) >= 2: | |
os.environ['TOKENIZERS_PARALLELISM'] = 'false' | |
question = history[-1][0] | |
answer = history[-1][1] | |
else: | |
return '%sNA' % prefix | |
else: | |
answer = args_list[-1] | |
instruction_nochat_arg_id = eval_func_param_names.index('instruction_nochat') | |
question = args_list[instruction_nochat_arg_id] | |
if question is None: | |
return '%sBad Question' % prefix | |
if answer is None: | |
return '%sBad Answer' % prefix | |
try: | |
score = score_qa(smodel, stokenizer, max_length_tokenize, question, answer, cutoff_len) | |
finally: | |
clear_torch_cache() | |
if isinstance(score, str): | |
return '%sNA' % prefix | |
return '{}{:.1%}'.format(prefix, score) | |
def noop_score_last_response(*args, **kwargs): | |
return "Response Score: Disabled" | |
if kwargs['score_model']: | |
score_fun = score_last_response | |
else: | |
score_fun = noop_score_last_response | |
score_args = dict(fn=score_fun, | |
inputs=inputs_list + [text_output], | |
outputs=[score_text], | |
) | |
score_args2 = dict(fn=partial(score_fun), | |
inputs=inputs_list2 + [text_output2], | |
outputs=[score_text2], | |
) | |
score_fun_func = functools.partial(score_fun, num_model_lock=len(text_outputs)) | |
all_score_args = dict(fn=score_fun_func, | |
inputs=inputs_list + text_outputs, | |
outputs=score_text, | |
) | |
score_args_nochat = dict(fn=partial(score_fun, nochat=True), | |
inputs=inputs_list + [text_output_nochat], | |
outputs=[score_text_nochat], | |
) | |
def update_history(*args, undo=False, retry=False, sanitize_user_prompt=False): | |
""" | |
User that fills history for bot | |
:param args: | |
:param undo: | |
:param retry: | |
:param sanitize_user_prompt: | |
:return: | |
""" | |
args_list = list(args) | |
user_message = args_list[eval_func_param_names.index('instruction')] # chat only | |
input1 = args_list[eval_func_param_names.index('iinput')] # chat only | |
prompt_type1 = args_list[eval_func_param_names.index('prompt_type')] | |
langchain_mode1 = args_list[eval_func_param_names.index('langchain_mode')] | |
langchain_action1 = args_list[eval_func_param_names.index('langchain_action')] | |
document_choice1 = args_list[eval_func_param_names.index('document_choice')] | |
if not prompt_type1: | |
# shouldn't have to specify if CLI launched model | |
prompt_type1 = kwargs['prompt_type'] | |
# apply back | |
args_list[eval_func_param_names.index('prompt_type')] = prompt_type1 | |
if input1 and not user_message.endswith(':'): | |
user_message1 = user_message + ":" + input1 | |
elif input1: | |
user_message1 = user_message + input1 | |
else: | |
user_message1 = user_message | |
if sanitize_user_prompt: | |
from better_profanity import profanity | |
user_message1 = profanity.censor(user_message1) | |
history = args_list[-1] | |
if history is None: | |
# bad history | |
history = [] | |
history = history.copy() | |
if undo: | |
if len(history) > 0: | |
history.pop() | |
return history | |
if retry: | |
if history: | |
history[-1][1] = None | |
return history | |
if user_message1 in ['', None, '\n']: | |
if langchain_action1 in LangChainAction.QUERY.value and \ | |
DocumentChoices.Only_All_Sources.name not in document_choice1 \ | |
or \ | |
langchain_mode1 in [LangChainMode.CHAT_LLM.value, LangChainMode.LLM.value]: | |
# reject non-retry submit/enter | |
return history | |
user_message1 = fix_text_for_gradio(user_message1) | |
return history + [[user_message1, None]] | |
def user(*args, undo=False, retry=False, sanitize_user_prompt=False): | |
return update_history(*args, undo=undo, retry=retry, sanitize_user_prompt=sanitize_user_prompt) | |
def all_user(*args, undo=False, retry=False, sanitize_user_prompt=False, num_model_lock=0): | |
args_list = list(args) | |
history_list = args_list[-num_model_lock:] | |
assert len(history_list) > 0, "Bad history list: %s" % history_list | |
for hi, history in enumerate(history_list): | |
if num_model_lock > 0: | |
hargs = args_list[:-num_model_lock].copy() | |
else: | |
hargs = args_list.copy() | |
hargs += [history] | |
history_list[hi] = update_history(*hargs, undo=undo, retry=retry, | |
sanitize_user_prompt=sanitize_user_prompt) | |
if len(history_list) > 1: | |
return tuple(history_list) | |
else: | |
return history_list[0] | |
def get_model_max_length(model_state1): | |
if model_state1 and not isinstance(model_state1["tokenizer"], str): | |
tokenizer = model_state1["tokenizer"] | |
elif model_state0 and not isinstance(model_state0["tokenizer"], str): | |
tokenizer = model_state0["tokenizer"] | |
else: | |
tokenizer = None | |
if tokenizer is not None: | |
return tokenizer.model_max_length | |
else: | |
return 2000 | |
def prep_bot(*args, retry=False, which_model=0): | |
""" | |
:param args: | |
:param retry: | |
:param which_model: identifies which model if doing model_lock | |
API only called for which_model=0, default for inputs_list, but rest should ignore inputs_list | |
:return: last element is True if should run bot, False if should just yield history | |
""" | |
# don't deepcopy, can contain model itself | |
args_list = list(args).copy() | |
model_state1 = args_list[-3] | |
my_db_state1 = args_list[-2] | |
history = args_list[-1] | |
prompt_type1 = args_list[eval_func_param_names.index('prompt_type')] | |
prompt_dict1 = args_list[eval_func_param_names.index('prompt_dict')] | |
if model_state1['model'] is None or model_state1['model'] == no_model_str: | |
return history, None, None, None | |
args_list = args_list[:-3] # only keep rest needed for evaluate() | |
langchain_mode1 = args_list[eval_func_param_names.index('langchain_mode')] | |
langchain_action1 = args_list[eval_func_param_names.index('langchain_action')] | |
document_choice1 = args_list[eval_func_param_names.index('document_choice')] | |
if not history: | |
print("No history", flush=True) | |
history = [] | |
return history, None, None, None | |
instruction1 = history[-1][0] | |
if retry and history: | |
# if retry, pop history and move onto bot stuff | |
instruction1 = history[-1][0] | |
history[-1][1] = None | |
elif not instruction1: | |
if langchain_action1 in LangChainAction.QUERY.value and \ | |
DocumentChoices.Only_All_Sources.name not in document_choice1 \ | |
or \ | |
langchain_mode1 in [LangChainMode.CHAT_LLM.value, LangChainMode.LLM.value]: | |
# if not retrying, then reject empty query | |
return history, None, None, None | |
elif len(history) > 0 and history[-1][1] not in [None, '']: | |
# reject submit button if already filled and not retrying | |
# None when not filling with '' to keep client happy | |
return history, None, None, None | |
# shouldn't have to specify in API prompt_type if CLI launched model, so prefer global CLI one if have it | |
prompt_type1, prompt_dict1 = update_prompt(prompt_type1, prompt_dict1, model_state1, | |
which_model=which_model) | |
# apply back to args_list for evaluate() | |
args_list[eval_func_param_names.index('prompt_type')] = prompt_type1 | |
args_list[eval_func_param_names.index('prompt_dict')] = prompt_dict1 | |
chat1 = args_list[eval_func_param_names.index('chat')] | |
model_max_length1 = get_model_max_length(model_state1) | |
context1 = history_to_context(history, langchain_mode1, prompt_type1, prompt_dict1, chat1, | |
model_max_length1, memory_restriction_level, | |
kwargs['keep_sources_in_context']) | |
args_list[0] = instruction1 # override original instruction with history from user | |
args_list[2] = context1 | |
fun1 = partial(evaluate, | |
model_state1, | |
my_db_state1, | |
*tuple(args_list), | |
**kwargs_evaluate) | |
return history, fun1, langchain_mode1, my_db_state1 | |
def get_response(fun1, history): | |
""" | |
bot that consumes history for user input | |
instruction (from input_list) itself is not consumed by bot | |
:return: | |
""" | |
if not fun1: | |
yield history, '' | |
return | |
try: | |
for output_fun in fun1(): | |
output = output_fun['response'] | |
extra = output_fun['sources'] # FIXME: can show sources in separate text box etc. | |
# ensure good visually, else markdown ignores multiple \n | |
bot_message = fix_text_for_gradio(output) | |
history[-1][1] = bot_message | |
yield history, '' | |
except StopIteration: | |
yield history, '' | |
except RuntimeError as e: | |
if "generator raised StopIteration" in str(e): | |
# assume last entry was bad, undo | |
history.pop() | |
yield history, '' | |
else: | |
if history and len(history) > 0 and len(history[0]) > 1 and history[-1][1] is None: | |
history[-1][1] = '' | |
yield history, str(e) | |
raise | |
except Exception as e: | |
# put error into user input | |
ex = "Exception: %s" % str(e) | |
if history and len(history) > 0 and len(history[0]) > 1 and history[-1][1] is None: | |
history[-1][1] = '' | |
yield history, ex | |
raise | |
finally: | |
clear_torch_cache() | |
return | |
def clear_embeddings(langchain_mode1, my_db): | |
# clear any use of embedding that sits on GPU, else keeps accumulating GPU usage even if clear torch cache | |
if db_type == 'chroma' and langchain_mode1 not in ['ChatLLM', 'LLM', 'Disabled', None, '']: | |
from gpt_langchain import clear_embedding | |
db = dbs.get('langchain_mode1') | |
if db is not None and not isinstance(db, str): | |
clear_embedding(db) | |
if langchain_mode1 == LangChainMode.MY_DATA.value and my_db is not None: | |
clear_embedding(my_db[0]) | |
def bot(*args, retry=False): | |
history, fun1, langchain_mode1, my_db_state1 = prep_bot(*args, retry=retry) | |
try: | |
for res in get_response(fun1, history): | |
yield res | |
finally: | |
clear_torch_cache() | |
clear_embeddings(langchain_mode1, my_db_state1) | |
def all_bot(*args, retry=False, model_states1=None): | |
args_list = list(args).copy() | |
chatbots = args_list[-len(model_states1):] | |
args_list0 = args_list[:-len(model_states1)] # same for all models | |
exceptions = [] | |
stream_output1 = args_list[eval_func_param_names.index('stream_output')] | |
max_time1 = args_list[eval_func_param_names.index('max_time')] | |
langchain_mode1 = args_list[eval_func_param_names.index('langchain_mode')] | |
my_db_state1 = None # will be filled below by some bot | |
try: | |
gen_list = [] | |
for chatboti, (chatbot1, model_state1) in enumerate(zip(chatbots, model_states1)): | |
args_list1 = args_list0.copy() | |
args_list1.insert(-1, model_state1) # insert at -1 so is at -2 | |
# if at start, have None in response still, replace with '' so client etc. acts like normal | |
# assumes other parts of code treat '' and None as if no response yet from bot | |
# can't do this later in bot code as racy with threaded generators | |
if len(chatbot1) > 0 and len(chatbot1[-1]) == 2 and chatbot1[-1][1] is None: | |
chatbot1[-1][1] = '' | |
args_list1.append(chatbot1) | |
# so consistent with prep_bot() | |
# with model_state1 at -3, my_db_state1 at -2, and history(chatbot) at -1 | |
# langchain_mode1 and my_db_state1 should be same for every bot | |
history, fun1, langchain_mode1, my_db_state1 = prep_bot(*tuple(args_list1), retry=retry, | |
which_model=chatboti) | |
gen1 = get_response(fun1, history) | |
if stream_output1: | |
gen1 = TimeoutIterator(gen1, timeout=0.01, sentinel=None, raise_on_exception=False) | |
# else timeout will truncate output for non-streaming case | |
gen_list.append(gen1) | |
bots_old = chatbots.copy() | |
exceptions_old = [''] * len(bots_old) | |
tgen0 = time.time() | |
for res1 in itertools.zip_longest(*gen_list): | |
if time.time() - tgen0 > max_time1: | |
print("Took too long: %s" % max_time1, flush=True) | |
break | |
bots = [x[0] if x is not None and not isinstance(x, BaseException) else y for x, y in | |
zip(res1, bots_old)] | |
bots_old = bots.copy() | |
def larger_str(x, y): | |
return x if len(x) > len(y) else y | |
exceptions = [x[1] if x is not None and not isinstance(x, BaseException) else larger_str(str(x), y) | |
for x, y in zip(res1, exceptions_old)] | |
exceptions_old = exceptions.copy() | |
def choose_exc(x): | |
# don't expose ports etc. to exceptions window | |
if is_public: | |
return "Endpoint unavailable or failed" | |
else: | |
return x | |
exceptions_str = '\n'.join( | |
['Model %s: %s' % (iix, choose_exc(x)) for iix, x in enumerate(exceptions) if | |
x not in [None, '', 'None']]) | |
if len(bots) > 1: | |
yield tuple(bots + [exceptions_str]) | |
else: | |
yield bots[0], exceptions_str | |
if exceptions: | |
exceptions = [x for x in exceptions if x not in ['', None, 'None']] | |
if exceptions: | |
print("Generate exceptions: %s" % exceptions, flush=True) | |
finally: | |
clear_torch_cache() | |
clear_embeddings(langchain_mode1, my_db_state1) | |
# NORMAL MODEL | |
user_args = dict(fn=functools.partial(user, sanitize_user_prompt=kwargs['sanitize_user_prompt']), | |
inputs=inputs_list + [text_output], | |
outputs=text_output, | |
) | |
bot_args = dict(fn=bot, | |
inputs=inputs_list + [model_state, my_db_state] + [text_output], | |
outputs=[text_output, exception_text], | |
) | |
retry_bot_args = dict(fn=functools.partial(bot, retry=True), | |
inputs=inputs_list + [model_state, my_db_state] + [text_output], | |
outputs=[text_output, exception_text], | |
) | |
retry_user_args = dict(fn=functools.partial(user, retry=True), | |
inputs=inputs_list + [text_output], | |
outputs=text_output, | |
) | |
undo_user_args = dict(fn=functools.partial(user, undo=True), | |
inputs=inputs_list + [text_output], | |
outputs=text_output, | |
) | |
# MODEL2 | |
user_args2 = dict(fn=functools.partial(user, sanitize_user_prompt=kwargs['sanitize_user_prompt']), | |
inputs=inputs_list2 + [text_output2], | |
outputs=text_output2, | |
) | |
bot_args2 = dict(fn=bot, | |
inputs=inputs_list2 + [model_state2, my_db_state] + [text_output2], | |
outputs=[text_output2, exception_text], | |
) | |
retry_bot_args2 = dict(fn=functools.partial(bot, retry=True), | |
inputs=inputs_list2 + [model_state2, my_db_state] + [text_output2], | |
outputs=[text_output2, exception_text], | |
) | |
retry_user_args2 = dict(fn=functools.partial(user, retry=True), | |
inputs=inputs_list2 + [text_output2], | |
outputs=text_output2, | |
) | |
undo_user_args2 = dict(fn=functools.partial(user, undo=True), | |
inputs=inputs_list2 + [text_output2], | |
outputs=text_output2, | |
) | |
# MODEL N | |
all_user_args = dict(fn=functools.partial(all_user, | |
sanitize_user_prompt=kwargs['sanitize_user_prompt'], | |
num_model_lock=len(text_outputs), | |
), | |
inputs=inputs_list + text_outputs, | |
outputs=text_outputs, | |
) | |
all_bot_args = dict(fn=functools.partial(all_bot, model_states1=model_states), | |
inputs=inputs_list + [my_db_state] + text_outputs, | |
outputs=text_outputs + [exception_text], | |
) | |
all_retry_bot_args = dict(fn=functools.partial(all_bot, model_states1=model_states, retry=True), | |
inputs=inputs_list + [my_db_state] + text_outputs, | |
outputs=text_outputs + [exception_text], | |
) | |
all_retry_user_args = dict(fn=functools.partial(all_user, retry=True, | |
sanitize_user_prompt=kwargs['sanitize_user_prompt'], | |
num_model_lock=len(text_outputs), | |
), | |
inputs=inputs_list + text_outputs, | |
outputs=text_outputs, | |
) | |
all_undo_user_args = dict(fn=functools.partial(all_user, undo=True, | |
sanitize_user_prompt=kwargs['sanitize_user_prompt'], | |
num_model_lock=len(text_outputs), | |
), | |
inputs=inputs_list + text_outputs, | |
outputs=text_outputs, | |
) | |
def clear_instruct(): | |
return gr.Textbox.update(value='') | |
def deselect_radio_chats(): | |
return gr.update(value=None) | |
def clear_all(): | |
return gr.Textbox.update(value=''), gr.Textbox.update(value=''), gr.update(value=None), \ | |
gr.Textbox.update(value=''), gr.Textbox.update(value='') | |
if kwargs['model_states']: | |
submits1 = submits2 = submits3 = [] | |
submits4 = [] | |
fun_source = [instruction.submit, submit.click, retry_btn.click] | |
fun_name = ['instruction', 'submit', 'retry'] | |
user_args = [all_user_args, all_user_args, all_retry_user_args] | |
bot_args = [all_bot_args, all_bot_args, all_retry_bot_args] | |
for userargs1, botarg1, funn1, funs1 in zip(user_args, bot_args, fun_name, fun_source): | |
submit_event11 = funs1(fn=dummy_fun, | |
inputs=instruction, outputs=instruction, queue=queue) | |
submit_event1a = submit_event11.then(**userargs1, queue=queue, | |
api_name='%s' % funn1 if allow_api else None) | |
# if hit enter on new instruction for submitting new query, no longer the saved chat | |
submit_event1b = submit_event1a.then(clear_all, inputs=None, | |
outputs=[instruction, iinput, radio_chats, score_text, | |
score_text2], | |
queue=queue) | |
submit_event1c = submit_event1b.then(**botarg1, | |
api_name='%s_bot' % funn1 if allow_api else None, | |
queue=queue) | |
submit_event1d = submit_event1c.then(**all_score_args, | |
api_name='%s_bot_score' % funn1 if allow_api else None, | |
queue=queue) | |
submits1.extend([submit_event1a, submit_event1b, submit_event1c, submit_event1d]) | |
# if undo, no longer the saved chat | |
submit_event4 = undo.click(fn=dummy_fun, | |
inputs=instruction, outputs=instruction, queue=queue) \ | |
.then(**all_undo_user_args, api_name='undo' if allow_api else None) \ | |
.then(clear_all, inputs=None, outputs=[instruction, iinput, radio_chats, score_text, | |
score_text2], queue=queue) \ | |
.then(**all_score_args, api_name='undo_score' if allow_api else None) | |
submits4 = [submit_event4] | |
else: | |
# in case 2nd model, consume instruction first, so can clear quickly | |
# bot doesn't consume instruction itself, just history from user, so why works | |
submit_event11 = instruction.submit(fn=dummy_fun, | |
inputs=instruction, outputs=instruction, queue=queue) | |
submit_event1a = submit_event11.then(**user_args, queue=queue, | |
api_name='instruction' if allow_api else None) | |
# if hit enter on new instruction for submitting new query, no longer the saved chat | |
submit_event1a2 = submit_event1a.then(deselect_radio_chats, inputs=None, outputs=radio_chats, queue=queue) | |
submit_event1b = submit_event1a2.then(**user_args2, api_name='instruction2' if allow_api else None) | |
submit_event1c = submit_event1b.then(clear_instruct, None, instruction) \ | |
.then(clear_instruct, None, iinput) | |
submit_event1d = submit_event1c.then(**bot_args, api_name='instruction_bot' if allow_api else None, | |
queue=queue) | |
submit_event1e = submit_event1d.then(**score_args, | |
api_name='instruction_bot_score' if allow_api else None, | |
queue=queue) | |
submit_event1f = submit_event1e.then(**bot_args2, api_name='instruction_bot2' if allow_api else None, | |
queue=queue) | |
submit_event1g = submit_event1f.then(**score_args2, | |
api_name='instruction_bot_score2' if allow_api else None, queue=queue) | |
submits1 = [submit_event1a, submit_event1a2, submit_event1b, submit_event1c, submit_event1d, | |
submit_event1e, | |
submit_event1f, submit_event1g] | |
submit_event21 = submit.click(fn=dummy_fun, | |
inputs=instruction, outputs=instruction, queue=queue) | |
submit_event2a = submit_event21.then(**user_args, api_name='submit' if allow_api else None) | |
# if submit new query, no longer the saved chat | |
submit_event2a2 = submit_event2a.then(deselect_radio_chats, inputs=None, outputs=radio_chats, queue=queue) | |
submit_event2b = submit_event2a2.then(**user_args2, api_name='submit2' if allow_api else None) | |
submit_event2c = submit_event2b.then(clear_all, inputs=None, | |
outputs=[instruction, iinput, radio_chats, score_text, score_text2], | |
queue=queue) | |
submit_event2d = submit_event2c.then(**bot_args, api_name='submit_bot' if allow_api else None, queue=queue) | |
submit_event2e = submit_event2d.then(**score_args, | |
api_name='submit_bot_score' if allow_api else None, | |
queue=queue) | |
submit_event2f = submit_event2e.then(**bot_args2, api_name='submit_bot2' if allow_api else None, | |
queue=queue) | |
submit_event2g = submit_event2f.then(**score_args2, | |
api_name='submit_bot_score2' if allow_api else None, | |
queue=queue) | |
submits2 = [submit_event2a, submit_event2a2, submit_event2b, submit_event2c, submit_event2d, | |
submit_event2e, | |
submit_event2f, submit_event2g] | |
submit_event31 = retry_btn.click(fn=dummy_fun, | |
inputs=instruction, outputs=instruction, queue=queue) | |
submit_event3a = submit_event31.then(**user_args, api_name='retry' if allow_api else None) | |
# if retry, no longer the saved chat | |
submit_event3a2 = submit_event3a.then(deselect_radio_chats, inputs=None, outputs=radio_chats, queue=queue) | |
submit_event3b = submit_event3a2.then(**user_args2, api_name='retry2' if allow_api else None) | |
submit_event3c = submit_event3b.then(clear_instruct, None, instruction) \ | |
.then(clear_instruct, None, iinput) | |
submit_event3d = submit_event3c.then(**retry_bot_args, api_name='retry_bot' if allow_api else None, | |
queue=queue) | |
submit_event3e = submit_event3d.then(**score_args, | |
api_name='retry_bot_score' if allow_api else None, | |
queue=queue) | |
submit_event3f = submit_event3e.then(**retry_bot_args2, api_name='retry_bot2' if allow_api else None, | |
queue=queue) | |
submit_event3g = submit_event3f.then(**score_args2, | |
api_name='retry_bot_score2' if allow_api else None, | |
queue=queue) | |
submits3 = [submit_event3a, submit_event3a2, submit_event3b, submit_event3c, submit_event3d, | |
submit_event3e, | |
submit_event3f, submit_event3g] | |
# if undo, no longer the saved chat | |
submit_event4 = undo.click(fn=dummy_fun, | |
inputs=instruction, outputs=instruction, queue=queue) \ | |
.then(**undo_user_args, api_name='undo' if allow_api else None) \ | |
.then(**undo_user_args2, api_name='undo2' if allow_api else None) \ | |
.then(clear_all, inputs=None, outputs=[instruction, iinput, radio_chats, score_text, | |
score_text2], queue=queue) \ | |
.then(**score_args, api_name='undo_score' if allow_api else None) \ | |
.then(**score_args2, api_name='undo_score2' if allow_api else None) | |
submits4 = [submit_event4] | |
# MANAGE CHATS | |
def dedup(short_chat, short_chats): | |
if short_chat not in short_chats: | |
return short_chat | |
for i in range(1, 1000): | |
short_chat_try = short_chat + "_" + str(i) | |
if short_chat_try not in short_chats: | |
return short_chat_try | |
# fallback and hope for best | |
short_chat = short_chat + "_" + str(random.random()) | |
return short_chat | |
def get_short_chat(x, short_chats, short_len=20, words=4): | |
if x and len(x[0]) == 2 and x[0][0] is not None: | |
short_chat = ' '.join(x[0][0][:short_len].split(' ')[:words]).strip() | |
short_chat = dedup(short_chat, short_chats) | |
else: | |
short_chat = None | |
return short_chat | |
def is_chat_same(x, y): | |
# <p> etc. added in chat, try to remove some of that to help avoid dup entries when hit new conversation | |
is_same = True | |
# length of conversation has to be same | |
if len(x) != len(y): | |
return False | |
if len(x) != len(y): | |
return False | |
for stepx, stepy in zip(x, y): | |
if len(stepx) != len(stepy): | |
# something off with a conversation | |
return False | |
for stepxx, stepyy in zip(stepx, stepy): | |
if len(stepxx) != len(stepyy): | |
# something off with a conversation | |
return False | |
if len(stepxx) != 2: | |
# something off | |
return False | |
if len(stepyy) != 2: | |
# something off | |
return False | |
questionx = stepxx[0].replace('<p>', '').replace('</p>', '') if stepxx[0] is not None else None | |
answerx = stepxx[1].replace('<p>', '').replace('</p>', '') if stepxx[1] is not None else None | |
questiony = stepyy[0].replace('<p>', '').replace('</p>', '') if stepyy[0] is not None else None | |
answery = stepyy[1].replace('<p>', '').replace('</p>', '') if stepyy[1] is not None else None | |
if questionx != questiony or answerx != answery: | |
return False | |
return is_same | |
def save_chat(*args): | |
args_list = list(args) | |
chat_list = args_list[:-1] # list of chatbot histories | |
# remove None histories | |
chat_list_not_none = [x for x in chat_list if x and len(x) > 0 and len(x[0]) == 2 and x[0][1] is not None] | |
chat_state1 = args_list[ | |
-1] # dict with keys of short chat names, values of list of list of chatbot histories | |
short_chats = list(chat_state1.keys()) | |
if len(chat_list_not_none) > 0: | |
# make short_chat key from only first history, based upon question that is same anyways | |
chat_first = chat_list_not_none[0] | |
short_chat = get_short_chat(chat_first, short_chats) | |
if short_chat: | |
old_chat_lists = list(chat_state1.values()) | |
already_exists = any([is_chat_same(chat_list, x) for x in old_chat_lists]) | |
if not already_exists: | |
chat_state1[short_chat] = chat_list.copy() | |
# clear chat_list so saved and then new conversation starts | |
chat_list = [[]] * len(chat_list) | |
ret_list = chat_list + [chat_state1] | |
return tuple(ret_list) | |
def update_radio_chats(chat_state1): | |
return gr.update(choices=list(chat_state1.keys()), value=None) | |
def switch_chat(chat_key, chat_state1, num_model_lock=0): | |
chosen_chat = chat_state1[chat_key] | |
# deal with possible different size of chat list vs. current list | |
ret_chat = [None] * (2 + num_model_lock) | |
for chati in range(0, 2 + num_model_lock): | |
ret_chat[chati % len(ret_chat)] = chosen_chat[chati % len(chosen_chat)] | |
return tuple(ret_chat) | |
def clear_texts(*args): | |
return tuple([gr.Textbox.update(value='')] * len(args)) | |
def clear_scores(): | |
return gr.Textbox.update(value=res_value), \ | |
gr.Textbox.update(value='Response Score: NA'), \ | |
gr.Textbox.update(value='Response Score: NA') | |
switch_chat_fun = functools.partial(switch_chat, num_model_lock=len(text_outputs)) | |
radio_chats.input(switch_chat_fun, | |
inputs=[radio_chats, chat_state], | |
outputs=[text_output, text_output2] + text_outputs) \ | |
.then(clear_scores, outputs=[score_text, score_text2, score_text_nochat]) | |
def remove_chat(chat_key, chat_state1): | |
chat_state1.pop(chat_key, None) | |
return chat_state1 | |
remove_chat_btn.click(remove_chat, inputs=[radio_chats, chat_state], outputs=chat_state) \ | |
.then(update_radio_chats, inputs=chat_state, outputs=radio_chats) | |
def get_chats1(chat_state1): | |
base = 'chats' | |
makedirs(base, exist_ok=True) | |
filename = os.path.join(base, 'chats_%s.json' % str(uuid.uuid4())) | |
with open(filename, "wt") as f: | |
f.write(json.dumps(chat_state1, indent=2)) | |
return filename | |
export_chats_btn.click(get_chats1, inputs=chat_state, outputs=chats_file, queue=False, | |
api_name='export_chats' if allow_api else None) | |
def add_chats_from_file(file, chat_state1, add_btn): | |
if not file: | |
return chat_state1, add_btn | |
if isinstance(file, str): | |
files = [file] | |
else: | |
files = file | |
if not files: | |
return chat_state1, add_btn | |
for file1 in files: | |
try: | |
if hasattr(file1, 'name'): | |
file1 = file1.name | |
with open(file1, "rt") as f: | |
new_chats = json.loads(f.read()) | |
for chat1_k, chat1_v in new_chats.items(): | |
# ignore chat1_k, regenerate and de-dup to avoid loss | |
_, chat_state1 = save_chat(chat1_v, chat_state1) | |
except BaseException as e: | |
t, v, tb = sys.exc_info() | |
ex = ''.join(traceback.format_exception(t, v, tb)) | |
print("Add chats exception: %s" % str(ex), flush=True) | |
return chat_state1, add_btn | |
# note for update_user_db_func output is ignored for db | |
add_to_chats_btn.click(add_chats_from_file, | |
inputs=[chatsup_output, chat_state, add_to_chats_btn], | |
outputs=[chat_state, add_to_my_db_btn], queue=False, | |
api_name='add_to_chats' if allow_api else None) \ | |
.then(clear_file_list, outputs=chatsup_output, queue=False) \ | |
.then(update_radio_chats, inputs=chat_state, outputs=radio_chats, queue=False) | |
clear_chat_btn.click(fn=clear_texts, | |
inputs=[text_output, text_output2] + text_outputs, | |
outputs=[text_output, text_output2] + text_outputs, | |
queue=False, api_name='clear' if allow_api else None) \ | |
.then(deselect_radio_chats, inputs=None, outputs=radio_chats, queue=False) \ | |
.then(clear_scores, outputs=[score_text, score_text2, score_text_nochat]) | |
# does both models | |
clear.click(save_chat, | |
inputs=[text_output, text_output2] + text_outputs + [chat_state], | |
outputs=[text_output, text_output2] + text_outputs + [chat_state], | |
api_name='save_chat' if allow_api else None) \ | |
.then(update_radio_chats, inputs=chat_state, outputs=radio_chats, | |
api_name='update_chats' if allow_api else None) \ | |
.then(clear_scores, outputs=[score_text, score_text2, score_text_nochat]) | |
# NOTE: clear of instruction/iinput for nochat has to come after score, | |
# because score for nochat consumes actual textbox, while chat consumes chat history filled by user() | |
no_chat_args = dict(fn=fun, | |
inputs=[model_state, my_db_state] + inputs_list, | |
outputs=text_output_nochat, | |
queue=queue, | |
) | |
submit_event_nochat = submit_nochat.click(**no_chat_args, api_name='submit_nochat' if allow_api else None) \ | |
.then(clear_torch_cache) \ | |
.then(**score_args_nochat, api_name='instruction_bot_score_nochat' if allow_api else None, queue=queue) \ | |
.then(clear_instruct, None, instruction_nochat) \ | |
.then(clear_instruct, None, iinput_nochat) \ | |
.then(clear_torch_cache) | |
# copy of above with text box submission | |
submit_event_nochat2 = instruction_nochat.submit(**no_chat_args) \ | |
.then(clear_torch_cache) \ | |
.then(**score_args_nochat, queue=queue) \ | |
.then(clear_instruct, None, instruction_nochat) \ | |
.then(clear_instruct, None, iinput_nochat) \ | |
.then(clear_torch_cache) | |
submit_event_nochat_api = submit_nochat_api.click(fun_with_dict_str, | |
inputs=[model_state, my_db_state, inputs_dict_str], | |
outputs=text_output_nochat_api, | |
queue=True, # required for generator | |
api_name='submit_nochat_api' if allow_api else None) \ | |
.then(clear_torch_cache) | |
def load_model(model_name, lora_weights, server_name, model_state_old, prompt_type_old, load_8bit, | |
infer_devices, gpu_id): | |
# ensure no API calls reach here | |
if is_public: | |
raise RuntimeError("Illegal access for %s" % model_name) | |
# ensure old model removed from GPU memory | |
if kwargs['debug']: | |
print("Pre-switch pre-del GPU memory: %s" % get_torch_allocated(), flush=True) | |
model0 = model_state0['model'] | |
if isinstance(model_state_old['model'], str) and model0 is not None: | |
# best can do, move model loaded at first to CPU | |
model0.cpu() | |
if model_state_old['model'] is not None and not isinstance(model_state_old['model'], str): | |
try: | |
model_state_old['model'].cpu() | |
except Exception as e: | |
# sometimes hit NotImplementedError: Cannot copy out of meta tensor; no data! | |
print("Unable to put model on CPU: %s" % str(e), flush=True) | |
del model_state_old['model'] | |
model_state_old['model'] = None | |
if model_state_old['tokenizer'] is not None and not isinstance(model_state_old['tokenizer'], str): | |
del model_state_old['tokenizer'] | |
model_state_old['tokenizer'] = None | |
clear_torch_cache() | |
if kwargs['debug']: | |
print("Pre-switch post-del GPU memory: %s" % get_torch_allocated(), flush=True) | |
if model_name is None or model_name == no_model_str: | |
# no-op if no model, just free memory | |
# no detranscribe needed for model, never go into evaluate | |
lora_weights = no_lora_str | |
server_name = no_server_str | |
return [None, None, None, model_name, server_name], \ | |
model_name, lora_weights, server_name, prompt_type_old, \ | |
gr.Slider.update(maximum=256), \ | |
gr.Slider.update(maximum=256) | |
# don't deepcopy, can contain model itself | |
all_kwargs1 = all_kwargs.copy() | |
all_kwargs1['base_model'] = model_name.strip() | |
all_kwargs1['load_8bit'] = load_8bit | |
all_kwargs1['infer_devices'] = infer_devices | |
all_kwargs1['gpu_id'] = int(gpu_id) # detranscribe | |
model_lower = model_name.strip().lower() | |
if model_lower in inv_prompt_type_to_model_lower: | |
prompt_type1 = inv_prompt_type_to_model_lower[model_lower] | |
else: | |
prompt_type1 = prompt_type_old | |
# detranscribe | |
if lora_weights == no_lora_str: | |
lora_weights = '' | |
all_kwargs1['lora_weights'] = lora_weights.strip() | |
if server_name == no_server_str: | |
server_name = '' | |
all_kwargs1['inference_server'] = server_name.strip() | |
model1, tokenizer1, device1 = get_model(reward_type=False, | |
**get_kwargs(get_model, exclude_names=['reward_type'], | |
**all_kwargs1)) | |
clear_torch_cache() | |
tokenizer_base_model = model_name | |
prompt_dict1, error0 = get_prompt(prompt_type1, '', | |
chat=False, context='', reduced=False, making_context=False, | |
return_dict=True) | |
model_state_new = dict(model=model1, tokenizer=tokenizer1, device=device1, | |
base_model=model_name, tokenizer_base_model=tokenizer_base_model, | |
lora_weights=lora_weights, inference_server=server_name, | |
prompt_type=prompt_type1, prompt_dict=prompt_dict1, | |
) | |
max_max_new_tokens1 = get_max_max_new_tokens(model_state_new, **kwargs) | |
if kwargs['debug']: | |
print("Post-switch GPU memory: %s" % get_torch_allocated(), flush=True) | |
return model_state_new, model_name, lora_weights, server_name, prompt_type1, \ | |
gr.Slider.update(maximum=max_max_new_tokens1), \ | |
gr.Slider.update(maximum=max_max_new_tokens1) | |
def get_prompt_str(prompt_type1, prompt_dict1, which=0): | |
if prompt_type1 in ['', None]: | |
print("Got prompt_type %s: %s" % (which, prompt_type1), flush=True) | |
return str({}) | |
prompt_dict1, prompt_dict_error = get_prompt(prompt_type1, prompt_dict1, chat=False, context='', | |
reduced=False, making_context=False, return_dict=True) | |
if prompt_dict_error: | |
return str(prompt_dict_error) | |
else: | |
# return so user can manipulate if want and use as custom | |
return str(prompt_dict1) | |
get_prompt_str_func1 = functools.partial(get_prompt_str, which=1) | |
get_prompt_str_func2 = functools.partial(get_prompt_str, which=2) | |
prompt_type.change(fn=get_prompt_str_func1, inputs=[prompt_type, prompt_dict], outputs=prompt_dict) | |
prompt_type2.change(fn=get_prompt_str_func2, inputs=[prompt_type2, prompt_dict2], outputs=prompt_dict2) | |
def dropdown_prompt_type_list(x): | |
return gr.Dropdown.update(value=x) | |
def chatbot_list(x, model_used_in): | |
return gr.Textbox.update(label=f'h2oGPT [Model: {model_used_in}]') | |
load_model_args = dict(fn=load_model, | |
inputs=[model_choice, lora_choice, server_choice, model_state, prompt_type, | |
model_load8bit_checkbox, model_infer_devices_checkbox, model_gpu], | |
outputs=[model_state, model_used, lora_used, server_used, | |
# if prompt_type changes, prompt_dict will change via change rule | |
prompt_type, max_new_tokens, min_new_tokens, | |
]) | |
prompt_update_args = dict(fn=dropdown_prompt_type_list, inputs=prompt_type, outputs=prompt_type) | |
chatbot_update_args = dict(fn=chatbot_list, inputs=[text_output, model_used], outputs=text_output) | |
nochat_update_args = dict(fn=chatbot_list, inputs=[text_output_nochat, model_used], outputs=text_output_nochat) | |
if not is_public: | |
load_model_event = load_model_button.click(**load_model_args, api_name='load_model' if allow_api else None) \ | |
.then(**prompt_update_args) \ | |
.then(**chatbot_update_args) \ | |
.then(**nochat_update_args) \ | |
.then(clear_torch_cache) | |
load_model_args2 = dict(fn=load_model, | |
inputs=[model_choice2, lora_choice2, server_choice2, model_state2, prompt_type2, | |
model_load8bit_checkbox2, model_infer_devices_checkbox2, model_gpu2], | |
outputs=[model_state2, model_used2, lora_used2, server_used2, | |
# if prompt_type2 changes, prompt_dict2 will change via change rule | |
prompt_type2, max_new_tokens2, min_new_tokens2 | |
]) | |
prompt_update_args2 = dict(fn=dropdown_prompt_type_list, inputs=prompt_type2, outputs=prompt_type2) | |
chatbot_update_args2 = dict(fn=chatbot_list, inputs=[text_output2, model_used2], outputs=text_output2) | |
if not is_public: | |
load_model_event2 = load_model_button2.click(**load_model_args2, | |
api_name='load_model2' if allow_api else None) \ | |
.then(**prompt_update_args2) \ | |
.then(**chatbot_update_args2) \ | |
.then(clear_torch_cache) | |
def dropdown_model_lora_server_list(model_list0, model_x, | |
lora_list0, lora_x, | |
server_list0, server_x, | |
model_used1, lora_used1, server_used1, | |
model_used2, lora_used2, server_used2, | |
): | |
model_new_state = [model_list0[0] + [model_x]] | |
model_new_options = [*model_new_state[0]] | |
x1 = model_x if model_used1 == no_model_str else model_used1 | |
x2 = model_x if model_used2 == no_model_str else model_used2 | |
ret1 = [gr.Dropdown.update(value=x1, choices=model_new_options), | |
gr.Dropdown.update(value=x2, choices=model_new_options), | |
'', model_new_state] | |
lora_new_state = [lora_list0[0] + [lora_x]] | |
lora_new_options = [*lora_new_state[0]] | |
# don't switch drop-down to added lora if already have model loaded | |
x1 = lora_x if model_used1 == no_model_str else lora_used1 | |
x2 = lora_x if model_used2 == no_model_str else lora_used2 | |
ret2 = [gr.Dropdown.update(value=x1, choices=lora_new_options), | |
gr.Dropdown.update(value=x2, choices=lora_new_options), | |
'', lora_new_state] | |
server_new_state = [server_list0[0] + [server_x]] | |
server_new_options = [*server_new_state[0]] | |
# don't switch drop-down to added server if already have model loaded | |
x1 = server_x if model_used1 == no_model_str else server_used1 | |
x2 = server_x if model_used2 == no_model_str else server_used2 | |
ret3 = [gr.Dropdown.update(value=x1, choices=server_new_options), | |
gr.Dropdown.update(value=x2, choices=server_new_options), | |
'', server_new_state] | |
return tuple(ret1 + ret2 + ret3) | |
add_model_lora_server_event = \ | |
add_model_lora_server_button.click(fn=dropdown_model_lora_server_list, | |
inputs=[model_options_state, new_model] + | |
[lora_options_state, new_lora] + | |
[server_options_state, new_server] + | |
[model_used, lora_used, server_used] + | |
[model_used2, lora_used2, server_used2], | |
outputs=[model_choice, model_choice2, new_model, model_options_state] + | |
[lora_choice, lora_choice2, new_lora, lora_options_state] + | |
[server_choice, server_choice2, new_server, | |
server_options_state], | |
queue=False) | |
go_btn.click(lambda: gr.update(visible=False), None, go_btn, api_name="go" if allow_api else None, queue=False) \ | |
.then(lambda: gr.update(visible=True), None, normal_block, queue=False) \ | |
.then(**load_model_args, queue=False).then(**prompt_update_args, queue=False) | |
def compare_textbox_fun(x): | |
return gr.Textbox.update(visible=x) | |
def compare_column_fun(x): | |
return gr.Column.update(visible=x) | |
def compare_prompt_fun(x): | |
return gr.Dropdown.update(visible=x) | |
def slider_fun(x): | |
return gr.Slider.update(visible=x) | |
compare_checkbox.select(compare_textbox_fun, compare_checkbox, text_output2, | |
api_name="compare_checkbox" if allow_api else None) \ | |
.then(compare_column_fun, compare_checkbox, col_model2) \ | |
.then(compare_prompt_fun, compare_checkbox, prompt_type2) \ | |
.then(compare_textbox_fun, compare_checkbox, score_text2) \ | |
.then(slider_fun, compare_checkbox, max_new_tokens2) \ | |
.then(slider_fun, compare_checkbox, min_new_tokens2) | |
# FIXME: add score_res2 in condition, but do better | |
# callback for logging flagged input/output | |
callback.setup(inputs_list + [text_output, text_output2] + text_outputs, "flagged_data_points") | |
flag_btn.click(lambda *args: callback.flag(args), inputs_list + [text_output, text_output2] + text_outputs, | |
None, | |
preprocess=False, | |
api_name='flag' if allow_api else None, queue=False) | |
flag_btn_nochat.click(lambda *args: callback.flag(args), inputs_list + [text_output_nochat], None, | |
preprocess=False, | |
api_name='flag_nochat' if allow_api else None, queue=False) | |
def get_system_info(): | |
if is_public: | |
time.sleep(10) # delay to avoid spam since queue=False | |
return gr.Textbox.update(value=system_info_print()) | |
system_event = system_btn.click(get_system_info, outputs=system_text, | |
api_name='system_info' if allow_api else None, queue=False) | |
def get_system_info_dict(system_input1, **kwargs1): | |
if system_input1 != os.getenv("ADMIN_PASS", ""): | |
return json.dumps({}) | |
exclude_list = ['admin_pass', 'examples'] | |
sys_dict = {k: v for k, v in kwargs1.items() if | |
isinstance(v, (str, int, bool, float)) and k not in exclude_list} | |
try: | |
sys_dict.update(system_info()) | |
except Exception as e: | |
# protection | |
print("Exception: %s" % str(e), flush=True) | |
return json.dumps(sys_dict) | |
get_system_info_dict_func = functools.partial(get_system_info_dict, **all_kwargs) | |
system_dict_event = system_btn2.click(get_system_info_dict_func, | |
inputs=system_input, | |
outputs=system_text2, | |
api_name='system_info_dict' if allow_api else None, | |
queue=False, # queue to avoid spam | |
) | |
def get_hash(): | |
return kwargs['git_hash'] | |
system_btn3.click(get_hash, | |
outputs=system_text3, | |
api_name='system_hash' if allow_api else None, | |
queue=False, | |
) | |
# don't pass text_output, don't want to clear output, just stop it | |
# cancel only stops outer generation, not inner generation or non-generation | |
stop_btn.click(lambda: None, None, None, | |
cancels=submits1 + submits2 + submits3 + | |
submits4 + | |
[submit_event_nochat, submit_event_nochat2] + | |
[eventdb1, eventdb2, eventdb3, | |
eventdb4, eventdb5, eventdb6] + | |
[eventdb7, eventdb8, eventdb9] | |
, | |
queue=False, api_name='stop' if allow_api else None).then(clear_torch_cache, queue=False) | |
def count_chat_tokens(model_state1, chat1, prompt_type1, prompt_dict1, | |
memory_restriction_level1=0, | |
keep_sources_in_context1=False, | |
): | |
if model_state1 and not isinstance(model_state1['tokenizer'], str): | |
tokenizer = model_state1['tokenizer'] | |
elif model_state0 and not isinstance(model_state0['tokenizer'], str): | |
tokenizer = model_state0['tokenizer'] | |
else: | |
tokenizer = None | |
if tokenizer is not None: | |
langchain_mode1 = 'ChatLLM' | |
# fake user message to mimic bot() | |
chat1 = copy.deepcopy(chat1) | |
chat1 = chat1 + [['user_message1', None]] | |
model_max_length1 = tokenizer.model_max_length | |
context1 = history_to_context(chat1, langchain_mode1, prompt_type1, prompt_dict1, chat1, | |
model_max_length1, | |
memory_restriction_level1, keep_sources_in_context1) | |
return str(tokenizer(context1, return_tensors="pt")['input_ids'].shape[1]) | |
else: | |
return "N/A" | |
count_chat_tokens_func = functools.partial(count_chat_tokens, | |
memory_restriction_level1=memory_restriction_level, | |
keep_sources_in_context1=kwargs['keep_sources_in_context']) | |
count_chat_tokens_btn.click(fn=count_chat_tokens, | |
inputs=[model_state, text_output, prompt_type, prompt_dict], | |
outputs=chat_token_count, api_name='count_tokens' if allow_api else None) | |
demo.load(None, None, None, _js=get_dark_js() if kwargs['h2ocolors'] and False else None) # light best | |
demo.queue(concurrency_count=kwargs['concurrency_count'], api_open=kwargs['api_open']) | |
favicon_path = "h2o-logo.svg" | |
if not os.path.isfile(favicon_path): | |
print("favicon_path=%s not found" % favicon_path, flush=True) | |
favicon_path = None | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(func=clear_torch_cache, trigger="interval", seconds=20) | |
if is_public and \ | |
kwargs['base_model'] not in non_hf_types: | |
# FIXME: disable for gptj, langchain or gpt4all modify print itself | |
# FIXME: and any multi-threaded/async print will enter model output! | |
scheduler.add_job(func=ping, trigger="interval", seconds=60) | |
scheduler.add_job(func=ping_gpu, trigger="interval", seconds=60 * 10) | |
scheduler.start() | |
# import control | |
if kwargs['langchain_mode'] == 'Disabled' and \ | |
os.environ.get("TEST_LANGCHAIN_IMPORT") and \ | |
kwargs['base_model'] not in non_hf_types: | |
assert 'gpt_langchain' not in sys.modules, "Dev bug, import of langchain when should not have" | |
assert 'langchain' not in sys.modules, "Dev bug, import of langchain when should not have" | |
demo.launch(share=kwargs['share'], server_name="0.0.0.0", show_error=True, | |
favicon_path=favicon_path, prevent_thread_lock=True, | |
auth=kwargs['auth']) | |
if kwargs['verbose']: | |
print("Started GUI", flush=True) | |
if kwargs['block_gradio_exit']: | |
demo.block_thread() | |
input_args_list = ['model_state', 'my_db_state'] | |
def get_inputs_list(inputs_dict, model_lower, model_id=1): | |
""" | |
map gradio objects in locals() to inputs for evaluate(). | |
:param inputs_dict: | |
:param model_lower: | |
:param model_id: Which model (1 or 2) of 2 | |
:return: | |
""" | |
inputs_list_names = list(inspect.signature(evaluate).parameters) | |
inputs_list = [] | |
inputs_dict_out = {} | |
for k in inputs_list_names: | |
if k == 'kwargs': | |
continue | |
if k in input_args_list + inputs_kwargs_list: | |
# these are added at use time for args or partial for kwargs, not taken as input | |
continue | |
if 'mbart-' not in model_lower and k in ['src_lang', 'tgt_lang']: | |
continue | |
if model_id == 2: | |
if k == 'prompt_type': | |
k = 'prompt_type2' | |
if k == 'prompt_used': | |
k = 'prompt_used2' | |
if k == 'max_new_tokens': | |
k = 'max_new_tokens2' | |
if k == 'min_new_tokens': | |
k = 'min_new_tokens2' | |
inputs_list.append(inputs_dict[k]) | |
inputs_dict_out[k] = inputs_dict[k] | |
return inputs_list, inputs_dict_out | |
def get_sources(db1, langchain_mode, dbs=None, docs_state0=None): | |
if langchain_mode in ['ChatLLM', 'LLM']: | |
source_files_added = "NA" | |
source_list = [] | |
elif langchain_mode in ['wiki_full']: | |
source_files_added = "Not showing wiki_full, takes about 20 seconds and makes 4MB file." \ | |
" Ask jon.mckinney@h2o.ai for file if required." | |
source_list = [] | |
elif langchain_mode == 'MyData' and len(db1) > 0 and db1[0] is not None: | |
from gpt_langchain import get_metadatas | |
metadatas = get_metadatas(db1[0]) | |
source_list = sorted(set([x['source'] for x in metadatas])) | |
source_files_added = '\n'.join(source_list) | |
elif langchain_mode in dbs and dbs[langchain_mode] is not None: | |
from gpt_langchain import get_metadatas | |
db1 = dbs[langchain_mode] | |
metadatas = get_metadatas(db1) | |
source_list = sorted(set([x['source'] for x in metadatas])) | |
source_files_added = '\n'.join(source_list) | |
else: | |
source_list = [] | |
source_files_added = "None" | |
sources_dir = "sources_dir" | |
makedirs(sources_dir) | |
sources_file = os.path.join(sources_dir, 'sources_%s_%s' % (langchain_mode, str(uuid.uuid4()))) | |
with open(sources_file, "wt") as f: | |
f.write(source_files_added) | |
source_list = docs_state0 + source_list | |
return sources_file, source_list | |
def update_user_db(file, db1, x, y, *args, dbs=None, langchain_mode='UserData', **kwargs): | |
try: | |
return _update_user_db(file, db1, x, y, *args, dbs=dbs, langchain_mode=langchain_mode, **kwargs) | |
except BaseException as e: | |
print(traceback.format_exc(), flush=True) | |
# gradio has issues if except, so fail semi-gracefully, else would hang forever in processing textbox | |
ex_str = "Exception: %s" % str(e) | |
source_files_added = """\ | |
<html> | |
<body> | |
<p> | |
Sources: <br> | |
</p> | |
<div style="overflow-y: auto;height:400px"> | |
{0} | |
</div> | |
</body> | |
</html> | |
""".format(ex_str) | |
if langchain_mode == 'MyData': | |
return None, langchain_mode, db1, x, y, source_files_added | |
else: | |
return None, langchain_mode, x, y, source_files_added | |
finally: | |
clear_torch_cache() | |
def get_lock_file(db1, langchain_mode): | |
assert len(db1) == 2 and db1[1] is not None and isinstance(db1[1], str) | |
user_id = db1[1] | |
base_path = 'locks' | |
makedirs(base_path) | |
lock_file = "db_%s_%s.lock" % (langchain_mode.replace(' ', '_'), user_id) | |
return lock_file | |
def _update_user_db(file, db1, x, y, chunk, chunk_size, dbs=None, db_type=None, langchain_mode='UserData', | |
user_path=None, | |
use_openai_embedding=None, | |
hf_embedding_model=None, | |
caption_loader=None, | |
enable_captions=None, | |
captions_model=None, | |
enable_ocr=None, | |
verbose=None, | |
is_url=None, is_txt=None): | |
assert use_openai_embedding is not None | |
assert hf_embedding_model is not None | |
assert caption_loader is not None | |
assert enable_captions is not None | |
assert captions_model is not None | |
assert enable_ocr is not None | |
assert verbose is not None | |
if dbs is None: | |
dbs = {} | |
assert isinstance(dbs, dict), "Wrong type for dbs: %s" % str(type(dbs)) | |
# assert db_type in ['faiss', 'chroma'], "db_type %s not supported" % db_type | |
from gpt_langchain import add_to_db, get_db, path_to_docs | |
# handle case of list of temp buffer | |
if isinstance(file, list) and len(file) > 0 and hasattr(file[0], 'name'): | |
file = [x.name for x in file] | |
# handle single file of temp buffer | |
if hasattr(file, 'name'): | |
file = file.name | |
if not isinstance(file, (list, tuple, typing.Generator)) and isinstance(file, str): | |
file = [file] | |
if langchain_mode == 'UserData' and user_path is not None: | |
# move temp files from gradio upload to stable location | |
for fili, fil in enumerate(file): | |
if isinstance(fil, str): | |
if fil.startswith('/tmp/gradio/'): | |
new_fil = os.path.join(user_path, os.path.basename(fil)) | |
if os.path.isfile(new_fil): | |
remove(new_fil) | |
try: | |
shutil.move(fil, new_fil) | |
except FileExistsError: | |
pass | |
file[fili] = new_fil | |
if verbose: | |
print("Adding %s" % file, flush=True) | |
sources = path_to_docs(file if not is_url and not is_txt else None, | |
verbose=verbose, | |
chunk=chunk, chunk_size=chunk_size, | |
url=file if is_url else None, | |
text=file if is_txt else None, | |
enable_captions=enable_captions, | |
captions_model=captions_model, | |
enable_ocr=enable_ocr, | |
caption_loader=caption_loader, | |
) | |
exceptions = [x for x in sources if x.metadata.get('exception')] | |
sources = [x for x in sources if 'exception' not in x.metadata] | |
lock_file = get_lock_file(db1, langchain_mode) | |
with filelock.FileLock(lock_file): | |
if langchain_mode == 'MyData': | |
if db1[0] is not None: | |
# then add | |
db, num_new_sources, new_sources_metadata = add_to_db(db1[0], sources, db_type=db_type, | |
use_openai_embedding=use_openai_embedding, | |
hf_embedding_model=hf_embedding_model) | |
else: | |
# in testing expect: | |
# assert len(db1) == 2 and db1[1] is None, "Bad MyData db: %s" % db1 | |
# for production hit, when user gets clicky: | |
assert len(db1) == 2, "Bad MyData db: %s" % db1 | |
# then create | |
# if added has to original state and didn't change, then would be shared db for all users | |
persist_directory = os.path.join(scratch_base_dir, 'db_dir_%s_%s' % (langchain_mode, db1[1])) | |
db = get_db(sources, use_openai_embedding=use_openai_embedding, | |
db_type=db_type, | |
persist_directory=persist_directory, | |
langchain_mode=langchain_mode, | |
hf_embedding_model=hf_embedding_model) | |
if db is not None: | |
db1[0] = db | |
source_files_added = get_source_files(db=db1[0], exceptions=exceptions) | |
return None, langchain_mode, db1, x, y, source_files_added | |
else: | |
from gpt_langchain import get_persist_directory | |
persist_directory = get_persist_directory(langchain_mode) | |
if langchain_mode in dbs and dbs[langchain_mode] is not None: | |
# then add | |
db, num_new_sources, new_sources_metadata = add_to_db(dbs[langchain_mode], sources, db_type=db_type, | |
use_openai_embedding=use_openai_embedding, | |
hf_embedding_model=hf_embedding_model) | |
else: | |
# then create | |
db = get_db(sources, use_openai_embedding=use_openai_embedding, | |
db_type=db_type, | |
persist_directory=persist_directory, | |
langchain_mode=langchain_mode, | |
hf_embedding_model=hf_embedding_model) | |
dbs[langchain_mode] = db | |
# NOTE we do not return db, because function call always same code path | |
# return dbs[langchain_mode], x, y | |
# db in this code path is updated in place | |
source_files_added = get_source_files(db=dbs[langchain_mode], exceptions=exceptions) | |
return None, langchain_mode, x, y, source_files_added | |
def get_db(db1, langchain_mode, dbs=None): | |
lock_file = get_lock_file(db1, langchain_mode) | |
with filelock.FileLock(lock_file): | |
if langchain_mode in ['wiki_full']: | |
# NOTE: avoid showing full wiki. Takes about 30 seconds over about 90k entries, but not useful for now | |
db = None | |
elif langchain_mode == 'MyData' and len(db1) > 0 and db1[0] is not None: | |
db = db1[0] | |
elif dbs is not None and langchain_mode in dbs and dbs[langchain_mode] is not None: | |
db = dbs[langchain_mode] | |
else: | |
db = None | |
return db | |
def get_source_files_given_langchain_mode(db1, langchain_mode='UserData', dbs=None): | |
db = get_db(db1, langchain_mode, dbs=dbs) | |
if langchain_mode in ['ChatLLM', 'LLM'] or db is None: | |
return "Sources: N/A" | |
return get_source_files(db=db, exceptions=None) | |
def get_source_files(db=None, exceptions=None, metadatas=None): | |
if exceptions is None: | |
exceptions = [] | |
# only should be one source, not confused | |
# assert db is not None or metadatas is not None | |
# clicky user | |
if db is None and metadatas is None: | |
return "No Sources at all" | |
if metadatas is None: | |
source_label = "Sources:" | |
if db is not None: | |
from gpt_langchain import get_metadatas | |
metadatas = get_metadatas(db) | |
else: | |
metadatas = [] | |
adding_new = False | |
else: | |
source_label = "New Sources:" | |
adding_new = True | |
# below automatically de-dups | |
from gpt_langchain import get_url | |
small_dict = {get_url(x['source'], from_str=True, short_name=True): get_short_name(x.get('head')) for x in | |
metadatas} | |
# if small_dict is empty dict, that's ok | |
df = pd.DataFrame(small_dict.items(), columns=['source', 'head']) | |
df.index = df.index + 1 | |
df.index.name = 'index' | |
source_files_added = tabulate.tabulate(df, headers='keys', tablefmt='unsafehtml') | |
if exceptions: | |
exception_metadatas = [x.metadata for x in exceptions] | |
small_dict = {get_url(x['source'], from_str=True, short_name=True): get_short_name(x.get('exception')) for x in | |
exception_metadatas} | |
# if small_dict is empty dict, that's ok | |
df = pd.DataFrame(small_dict.items(), columns=['source', 'exception']) | |
df.index = df.index + 1 | |
df.index.name = 'index' | |
exceptions_html = tabulate.tabulate(df, headers='keys', tablefmt='unsafehtml') | |
else: | |
exceptions_html = '' | |
if metadatas and exceptions: | |
source_files_added = """\ | |
<html> | |
<body> | |
<p> | |
{0} <br> | |
</p> | |
<div style="overflow-y: auto;height:400px"> | |
{1} | |
{2} | |
</div> | |
</body> | |
</html> | |
""".format(source_label, source_files_added, exceptions_html) | |
elif metadatas: | |
source_files_added = """\ | |
<html> | |
<body> | |
<p> | |
{0} <br> | |
</p> | |
<div style="overflow-y: auto;height:400px"> | |
{1} | |
</div> | |
</body> | |
</html> | |
""".format(source_label, source_files_added) | |
elif exceptions_html: | |
source_files_added = """\ | |
<html> | |
<body> | |
<p> | |
Exceptions: <br> | |
</p> | |
<div style="overflow-y: auto;height:400px"> | |
{0} | |
</div> | |
</body> | |
</html> | |
""".format(exceptions_html) | |
else: | |
if adding_new: | |
source_files_added = "No New Sources" | |
else: | |
source_files_added = "No Sources" | |
return source_files_added | |
def update_and_get_source_files_given_langchain_mode(db1, langchain_mode, dbs=None, first_para=None, | |
text_limit=None, chunk=None, chunk_size=None, | |
user_path=None, db_type=None, load_db_if_exists=None, | |
n_jobs=None, verbose=None): | |
db = get_db(db1, langchain_mode, dbs=dbs) | |
from gpt_langchain import make_db | |
db, num_new_sources, new_sources_metadata = make_db(use_openai_embedding=False, | |
hf_embedding_model="sentence-transformers/all-MiniLM-L6-v2", | |
first_para=first_para, text_limit=text_limit, | |
chunk=chunk, | |
chunk_size=chunk_size, | |
langchain_mode=langchain_mode, | |
user_path=user_path, | |
db_type=db_type, | |
load_db_if_exists=load_db_if_exists, | |
db=db, | |
n_jobs=n_jobs, | |
verbose=verbose) | |
# return only new sources with text saying such | |
return get_source_files(db=None, exceptions=None, metadatas=new_sources_metadata) | |