Spaces:
Runtime error
Runtime error
import inspect | |
import os | |
from functools import partial | |
from typing import Dict, Any, Optional, List | |
from langchain.callbacks.manager import CallbackManagerForLLMRun | |
from pydantic import root_validator | |
from langchain.llms import gpt4all | |
from dotenv import dotenv_values | |
from utils import FakeTokenizer | |
def get_model_tokenizer_gpt4all(base_model, **kwargs): | |
# defaults (some of these are generation parameters, so need to be passed in at generation time) | |
model_kwargs = dict(n_threads=os.cpu_count() // 2, | |
temp=kwargs.get('temperature', 0.2), | |
top_p=kwargs.get('top_p', 0.75), | |
top_k=kwargs.get('top_k', 40), | |
n_ctx=2048 - 256) | |
env_gpt4all_file = ".env_gpt4all" | |
model_kwargs.update(dotenv_values(env_gpt4all_file)) | |
# make int or float if can to satisfy types for class | |
for k, v in model_kwargs.items(): | |
try: | |
if float(v) == int(v): | |
model_kwargs[k] = int(v) | |
else: | |
model_kwargs[k] = float(v) | |
except: | |
pass | |
if base_model == "llama": | |
if 'model_path_llama' not in model_kwargs: | |
raise ValueError("No model_path_llama in %s" % env_gpt4all_file) | |
model_path = model_kwargs.pop('model_path_llama') | |
# FIXME: GPT4All version of llama doesn't handle new quantization, so use llama_cpp_python | |
from llama_cpp import Llama | |
# llama sets some things at init model time, not generation time | |
func_names = list(inspect.signature(Llama.__init__).parameters) | |
model_kwargs = {k: v for k, v in model_kwargs.items() if k in func_names} | |
model_kwargs['n_ctx'] = int(model_kwargs['n_ctx']) | |
model = Llama(model_path=model_path, **model_kwargs) | |
elif base_model in "gpt4all_llama": | |
if 'model_name_gpt4all_llama' not in model_kwargs and 'model_path_gpt4all_llama' not in model_kwargs: | |
raise ValueError("No model_name_gpt4all_llama or model_path_gpt4all_llama in %s" % env_gpt4all_file) | |
model_name = model_kwargs.pop('model_name_gpt4all_llama') | |
model_type = 'llama' | |
from gpt4all import GPT4All as GPT4AllModel | |
model = GPT4AllModel(model_name=model_name, model_type=model_type) | |
elif base_model in "gptj": | |
if 'model_name_gptj' not in model_kwargs and 'model_path_gptj' not in model_kwargs: | |
raise ValueError("No model_name_gpt4j or model_path_gpt4j in %s" % env_gpt4all_file) | |
model_name = model_kwargs.pop('model_name_gptj') | |
model_type = 'gptj' | |
from gpt4all import GPT4All as GPT4AllModel | |
model = GPT4AllModel(model_name=model_name, model_type=model_type) | |
else: | |
raise ValueError("No such base_model %s" % base_model) | |
return model, FakeTokenizer(), 'cpu' | |
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler | |
class H2OStreamingStdOutCallbackHandler(StreamingStdOutCallbackHandler): | |
def on_llm_new_token(self, token: str, **kwargs: Any) -> None: | |
"""Run on new LLM token. Only available when streaming is enabled.""" | |
# streaming to std already occurs without this | |
# sys.stdout.write(token) | |
# sys.stdout.flush() | |
pass | |
def get_model_kwargs(env_kwargs, default_kwargs, cls, exclude_list=[]): | |
# default from class | |
model_kwargs = {k: v.default for k, v in dict(inspect.signature(cls).parameters).items() if k not in exclude_list} | |
# from our defaults | |
model_kwargs.update(default_kwargs) | |
# from user defaults | |
model_kwargs.update(env_kwargs) | |
# ensure only valid keys | |
func_names = list(inspect.signature(cls).parameters) | |
model_kwargs = {k: v for k, v in model_kwargs.items() if k in func_names} | |
return model_kwargs | |
def get_llm_gpt4all(model_name, | |
model=None, | |
max_new_tokens=256, | |
temperature=0.1, | |
repetition_penalty=1.0, | |
top_k=40, | |
top_p=0.7, | |
streaming=False, | |
callbacks=None, | |
prompter=None, | |
context='', | |
iinput='', | |
verbose=False, | |
): | |
assert prompter is not None | |
env_gpt4all_file = ".env_gpt4all" | |
env_kwargs = dotenv_values(env_gpt4all_file) | |
max_tokens = env_kwargs.pop('max_tokens', 2048 - max_new_tokens) | |
default_kwargs = dict(context_erase=0.5, | |
n_batch=1, | |
max_tokens=max_tokens, | |
n_predict=max_new_tokens, | |
repeat_last_n=64 if repetition_penalty != 1.0 else 0, | |
repeat_penalty=repetition_penalty, | |
temp=temperature, | |
temperature=temperature, | |
top_k=top_k, | |
top_p=top_p, | |
use_mlock=True, | |
verbose=verbose) | |
if model_name == 'llama': | |
cls = H2OLlamaCpp | |
model_path = env_kwargs.pop('model_path_llama') if model is None else model | |
model_kwargs = get_model_kwargs(env_kwargs, default_kwargs, cls, exclude_list=['lc_kwargs']) | |
model_kwargs.update(dict(model_path=model_path, callbacks=callbacks, streaming=streaming, | |
prompter=prompter, context=context, iinput=iinput)) | |
llm = cls(**model_kwargs) | |
llm.client.verbose = verbose | |
elif model_name == 'gpt4all_llama': | |
cls = H2OGPT4All | |
model_path = env_kwargs.pop('model_path_gpt4all_llama') if model is None else model | |
model_kwargs = get_model_kwargs(env_kwargs, default_kwargs, cls, exclude_list=['lc_kwargs']) | |
model_kwargs.update( | |
dict(model=model_path, backend='llama', callbacks=callbacks, streaming=streaming, | |
prompter=prompter, context=context, iinput=iinput)) | |
llm = cls(**model_kwargs) | |
elif model_name == 'gptj': | |
cls = H2OGPT4All | |
model_path = env_kwargs.pop('model_path_gptj') if model is None else model | |
model_kwargs = get_model_kwargs(env_kwargs, default_kwargs, cls, exclude_list=['lc_kwargs']) | |
model_kwargs.update( | |
dict(model=model_path, backend='gptj', callbacks=callbacks, streaming=streaming, | |
prompter=prompter, context=context, iinput=iinput)) | |
llm = cls(**model_kwargs) | |
else: | |
raise RuntimeError("No such model_name %s" % model_name) | |
return llm | |
class H2OGPT4All(gpt4all.GPT4All): | |
model: Any | |
prompter: Any | |
context: Any = '' | |
iinput: Any = '' | |
"""Path to the pre-trained GPT4All model file.""" | |
def validate_environment(cls, values: Dict) -> Dict: | |
"""Validate that the python package exists in the environment.""" | |
try: | |
if isinstance(values["model"], str): | |
from gpt4all import GPT4All as GPT4AllModel | |
full_path = values["model"] | |
model_path, delimiter, model_name = full_path.rpartition("/") | |
model_path += delimiter | |
values["client"] = GPT4AllModel( | |
model_name=model_name, | |
model_path=model_path or None, | |
model_type=values["backend"], | |
allow_download=False, | |
) | |
if values["n_threads"] is not None: | |
# set n_threads | |
values["client"].model.set_thread_count(values["n_threads"]) | |
else: | |
values["client"] = values["model"] | |
try: | |
values["backend"] = values["client"].model_type | |
except AttributeError: | |
# The below is for compatibility with GPT4All Python bindings <= 0.2.3. | |
values["backend"] = values["client"].model.model_type | |
except ImportError: | |
raise ValueError( | |
"Could not import gpt4all python package. " | |
"Please install it with `pip install gpt4all`." | |
) | |
return values | |
def _call( | |
self, | |
prompt: str, | |
stop: Optional[List[str]] = None, | |
run_manager: Optional[CallbackManagerForLLMRun] = None, | |
**kwargs, | |
) -> str: | |
# Roughly 4 chars per token if natural language | |
n_ctx = 2048 | |
prompt = prompt[-self.max_tokens * 4:] | |
# use instruct prompting | |
data_point = dict(context=self.context, instruction=prompt, input=self.iinput) | |
prompt = self.prompter.generate_prompt(data_point) | |
verbose = False | |
if verbose: | |
print("_call prompt: %s" % prompt, flush=True) | |
# FIXME: GPT4ALl doesn't support yield during generate, so cannot support streaming except via itself to stdout | |
return super()._call(prompt, stop=stop, run_manager=run_manager) | |
from langchain.llms import LlamaCpp | |
class H2OLlamaCpp(LlamaCpp): | |
model_path: Any | |
prompter: Any | |
context: Any | |
iinput: Any | |
"""Path to the pre-trained GPT4All model file.""" | |
def validate_environment(cls, values: Dict) -> Dict: | |
"""Validate that llama-cpp-python library is installed.""" | |
if isinstance(values["model_path"], str): | |
model_path = values["model_path"] | |
model_param_names = [ | |
"lora_path", | |
"lora_base", | |
"n_ctx", | |
"n_parts", | |
"seed", | |
"f16_kv", | |
"logits_all", | |
"vocab_only", | |
"use_mlock", | |
"n_threads", | |
"n_batch", | |
"use_mmap", | |
"last_n_tokens_size", | |
] | |
model_params = {k: values[k] for k in model_param_names} | |
# For backwards compatibility, only include if non-null. | |
if values["n_gpu_layers"] is not None: | |
model_params["n_gpu_layers"] = values["n_gpu_layers"] | |
try: | |
from llama_cpp import Llama | |
values["client"] = Llama(model_path, **model_params) | |
except ImportError: | |
raise ModuleNotFoundError( | |
"Could not import llama-cpp-python library. " | |
"Please install the llama-cpp-python library to " | |
"use this embedding model: pip install llama-cpp-python" | |
) | |
except Exception as e: | |
raise ValueError( | |
f"Could not load Llama model from path: {model_path}. " | |
f"Received error {e}" | |
) | |
else: | |
values["client"] = values["model_path"] | |
return values | |
def _call( | |
self, | |
prompt: str, | |
stop: Optional[List[str]] = None, | |
run_manager: Optional[CallbackManagerForLLMRun] = None, | |
**kwargs, | |
) -> str: | |
verbose = False | |
# tokenize twice, just to count tokens, since llama cpp python wrapper has no way to truncate | |
# still have to avoid crazy sizes, else hit llama_tokenize: too many tokens -- might still hit, not fatal | |
prompt = prompt[-self.n_ctx * 4:] | |
prompt_tokens = self.client.tokenize(b" " + prompt.encode("utf-8")) | |
num_prompt_tokens = len(prompt_tokens) | |
if num_prompt_tokens > self.n_ctx: | |
# conservative by using int() | |
chars_per_token = int(len(prompt) / num_prompt_tokens) | |
prompt = prompt[-self.n_ctx * chars_per_token:] | |
if verbose: | |
print("reducing tokens, assuming average of %s chars/token: %s" % chars_per_token, flush=True) | |
prompt_tokens2 = self.client.tokenize(b" " + prompt.encode("utf-8")) | |
num_prompt_tokens2 = len(prompt_tokens2) | |
print("reduced tokens from %d -> %d" % (num_prompt_tokens, num_prompt_tokens2), flush=True) | |
# use instruct prompting | |
data_point = dict(context=self.context, instruction=prompt, input=self.iinput) | |
prompt = self.prompter.generate_prompt(data_point) | |
if verbose: | |
print("_call prompt: %s" % prompt, flush=True) | |
if self.streaming: | |
text_callback = None | |
if run_manager: | |
text_callback = partial( | |
run_manager.on_llm_new_token, verbose=self.verbose | |
) | |
# parent handler of streamer expects to see prompt first else output="" and lose if prompt=None in prompter | |
if text_callback: | |
text_callback(prompt) | |
text = "" | |
for token in self.stream(prompt=prompt, stop=stop, run_manager=run_manager): | |
text_chunk = token["choices"][0]["text"] | |
# self.stream already calls text_callback | |
# if text_callback: | |
# text_callback(text_chunk) | |
text += text_chunk | |
return text | |
else: | |
params = self._get_parameters(stop) | |
params = {**params, **kwargs} | |
result = self.client(prompt=prompt, **params) | |
return result["choices"][0]["text"] | |