|
|
import warnings |
|
|
warnings.filterwarnings("ignore") |
|
|
import os |
|
|
import argparse |
|
|
import face_alignment |
|
|
import torch |
|
|
import torchaudio |
|
|
import numpy as np |
|
|
import cv2 |
|
|
from PIL import Image, ImageDraw |
|
|
from moviepy import * |
|
|
from collections import deque |
|
|
from skimage import transform as tf |
|
|
import yaml |
|
|
|
|
|
from look2hear.models import Dolphin |
|
|
from look2hear.datas.transform import get_preprocessing_pipelines |
|
|
|
|
|
from face_detection_utils import detect_faces |
|
|
|
|
|
|
|
|
def linear_interpolate(landmarks, start_idx, stop_idx): |
|
|
start_landmarks = landmarks[start_idx] |
|
|
stop_landmarks = landmarks[stop_idx] |
|
|
delta = stop_landmarks - start_landmarks |
|
|
for idx in range(1, stop_idx-start_idx): |
|
|
landmarks[start_idx+idx] = start_landmarks + idx/float(stop_idx-start_idx) * delta |
|
|
return landmarks |
|
|
|
|
|
|
|
|
def warp_img(src, dst, img, std_size): |
|
|
tform = tf.estimate_transform('similarity', src, dst) |
|
|
warped = tf.warp(img, inverse_map=tform.inverse, output_shape=std_size) |
|
|
warped = warped * 255 |
|
|
warped = warped.astype('uint8') |
|
|
return warped, tform |
|
|
|
|
|
def apply_transform(transform, img, std_size): |
|
|
warped = tf.warp(img, inverse_map=transform.inverse, output_shape=std_size) |
|
|
warped = warped * 255 |
|
|
warped = warped.astype('uint8') |
|
|
return warped |
|
|
|
|
|
|
|
|
def cut_patch(img, landmarks, height, width, threshold=5): |
|
|
|
|
|
center_x, center_y = np.mean(landmarks, axis=0) |
|
|
|
|
|
if center_y - height < 0: |
|
|
center_y = height |
|
|
if center_y - height < 0 - threshold: |
|
|
raise Exception('too much bias in height') |
|
|
if center_x - width < 0: |
|
|
center_x = width |
|
|
if center_x - width < 0 - threshold: |
|
|
raise Exception('too much bias in width') |
|
|
|
|
|
if center_y + height > img.shape[0]: |
|
|
center_y = img.shape[0] - height |
|
|
if center_y + height > img.shape[0] + threshold: |
|
|
raise Exception('too much bias in height') |
|
|
if center_x + width > img.shape[1]: |
|
|
center_x = img.shape[1] - width |
|
|
if center_x + width > img.shape[1] + threshold: |
|
|
raise Exception('too much bias in width') |
|
|
|
|
|
cutted_img = np.copy(img[ int(round(center_y) - round(height)): int(round(center_y) + round(height)), |
|
|
int(round(center_x) - round(width)): int(round(center_x) + round(width))]) |
|
|
return cutted_img |
|
|
|
|
|
|
|
|
def convert_bgr2gray(data): |
|
|
return np.stack([cv2.cvtColor(_, cv2.COLOR_BGR2GRAY) for _ in data], axis=0) |
|
|
|
|
|
|
|
|
def save2npz(filename, data=None): |
|
|
assert data is not None, "data is {}".format(data) |
|
|
if not os.path.exists(os.path.dirname(filename)): |
|
|
os.makedirs(os.path.dirname(filename)) |
|
|
np.savez_compressed(filename, data=data) |
|
|
|
|
|
def read_video(filename): |
|
|
"""Read video frames using MoviePy for better compatibility""" |
|
|
try: |
|
|
video_clip = VideoFileClip(filename) |
|
|
for frame in video_clip.iter_frames(): |
|
|
|
|
|
frame_bgr = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR) |
|
|
yield frame_bgr |
|
|
video_clip.close() |
|
|
except Exception as e: |
|
|
print(f"Error reading video {filename}: {e}") |
|
|
return |
|
|
|
|
|
def face2head(boxes, scale=1.5): |
|
|
new_boxes = [] |
|
|
for box in boxes: |
|
|
width = box[2] - box[0] |
|
|
height= box[3] - box[1] |
|
|
width_center = (box[2] + box[0]) / 2 |
|
|
height_center = (box[3] + box[1]) / 2 |
|
|
square_width = int(max(width, height) * scale) |
|
|
new_box = [width_center - square_width/2, height_center - square_width/2, width_center + square_width/2, height_center + square_width/2] |
|
|
new_boxes.append(new_box) |
|
|
return new_boxes |
|
|
|
|
|
def bb_intersection_over_union(boxA, boxB): |
|
|
|
|
|
xA = max(boxA[0], boxB[0]) |
|
|
yA = max(boxA[1], boxB[1]) |
|
|
xB = min(boxA[2], boxB[2]) |
|
|
yB = min(boxA[3], boxB[3]) |
|
|
|
|
|
interArea = max(0, xB - xA + 1) * max(0, yB - yA + 1) |
|
|
|
|
|
|
|
|
boxAArea = (boxA[2] - boxA[0] + 1) * (boxA[3] - boxA[1] + 1) |
|
|
boxBArea = (boxB[2] - boxB[0] + 1) * (boxB[3] - boxB[1] + 1) |
|
|
|
|
|
|
|
|
|
|
|
iou = interArea / float(boxAArea + boxBArea - interArea) |
|
|
|
|
|
return iou |
|
|
|
|
|
def detectface(video_input_path, output_path, detect_every_N_frame, scalar_face_detection, number_of_speakers): |
|
|
device = torch.device('cuda' if torch.cuda.get_device_name() else 'cpu') |
|
|
print('Running on device: {}'.format(device)) |
|
|
os.makedirs(os.path.join(output_path, 'faces'), exist_ok=True) |
|
|
os.makedirs(os.path.join(output_path, 'landmark'), exist_ok=True) |
|
|
|
|
|
landmarks_dic = {} |
|
|
faces_dic = {} |
|
|
boxes_dic = {} |
|
|
|
|
|
for i in range(number_of_speakers): |
|
|
landmarks_dic[i] = [] |
|
|
faces_dic[i] = [] |
|
|
boxes_dic[i] = [] |
|
|
|
|
|
video_clip = VideoFileClip(video_input_path) |
|
|
print("Video statistics: ", video_clip.w, video_clip.h, (video_clip.w, video_clip.h), video_clip.fps) |
|
|
frames = [Image.fromarray(frame) for frame in video_clip.iter_frames()] |
|
|
print('Number of frames in video: ', len(frames)) |
|
|
video_clip.close() |
|
|
fa = face_alignment.FaceAlignment(face_alignment.LandmarksType.TWO_D, flip_input=False) |
|
|
|
|
|
for i, frame in enumerate(frames): |
|
|
print('\rTracking frame: {}'.format(i + 1), end='') |
|
|
|
|
|
|
|
|
if i % detect_every_N_frame == 0: |
|
|
frame_array = np.array(frame) |
|
|
|
|
|
detected_boxes, _ = detect_faces( |
|
|
frame_array, |
|
|
threshold=0.9, |
|
|
allow_upscaling=False, |
|
|
) |
|
|
|
|
|
if detected_boxes is None or len(detected_boxes) == 0: |
|
|
detected_boxes, _ = detect_faces( |
|
|
frame_array, |
|
|
threshold=0.7, |
|
|
allow_upscaling=True, |
|
|
) |
|
|
|
|
|
if detected_boxes is not None and len(detected_boxes) > 0: |
|
|
detected_boxes = detected_boxes[:number_of_speakers] |
|
|
detected_boxes = face2head(detected_boxes, scalar_face_detection) |
|
|
else: |
|
|
detected_boxes = [] |
|
|
|
|
|
|
|
|
if i == 0: |
|
|
|
|
|
if len(detected_boxes) < number_of_speakers: |
|
|
raise ValueError(f"First frame must detect at least {number_of_speakers} faces, but only found {len(detected_boxes)}") |
|
|
|
|
|
|
|
|
for j in range(number_of_speakers): |
|
|
box = detected_boxes[j] |
|
|
face = frame.crop((box[0], box[1], box[2], box[3])).resize((224,224)) |
|
|
preds = fa.get_landmarks(np.array(face)) |
|
|
|
|
|
if preds is None: |
|
|
raise ValueError(f"Face landmarks not detected in initial frame for speaker {j}") |
|
|
|
|
|
faces_dic[j].append(face) |
|
|
landmarks_dic[j].append(preds) |
|
|
boxes_dic[j].append(box) |
|
|
else: |
|
|
|
|
|
matched_speakers = set() |
|
|
speaker_boxes = [None] * number_of_speakers |
|
|
|
|
|
|
|
|
for box in detected_boxes: |
|
|
iou_scores = [] |
|
|
for speaker_id in range(number_of_speakers): |
|
|
if speaker_id in matched_speakers: |
|
|
iou_scores.append(-1) |
|
|
else: |
|
|
last_box = boxes_dic[speaker_id][-1] |
|
|
iou_score = bb_intersection_over_union(box, last_box) |
|
|
iou_scores.append(iou_score) |
|
|
|
|
|
if max(iou_scores) > 0: |
|
|
best_speaker = iou_scores.index(max(iou_scores)) |
|
|
speaker_boxes[best_speaker] = box |
|
|
matched_speakers.add(best_speaker) |
|
|
|
|
|
|
|
|
for speaker_id in range(number_of_speakers): |
|
|
if speaker_boxes[speaker_id] is not None: |
|
|
|
|
|
box = speaker_boxes[speaker_id] |
|
|
else: |
|
|
|
|
|
box = boxes_dic[speaker_id][-1] |
|
|
|
|
|
|
|
|
face = frame.crop((box[0], box[1], box[2], box[3])).resize((224,224)) |
|
|
preds = fa.get_landmarks(np.array(face)) |
|
|
|
|
|
if preds is None: |
|
|
|
|
|
preds = landmarks_dic[speaker_id][-1] |
|
|
|
|
|
faces_dic[speaker_id].append(face) |
|
|
landmarks_dic[speaker_id].append(preds) |
|
|
boxes_dic[speaker_id].append(box) |
|
|
|
|
|
|
|
|
frame_counts = [len(boxes_dic[s]) for s in range(number_of_speakers)] |
|
|
print(f"\nFrame counts per speaker: {frame_counts}") |
|
|
assert all(count == len(frames) for count in frame_counts), f"Inconsistent frame counts: {frame_counts}" |
|
|
|
|
|
|
|
|
for s in range(number_of_speakers): |
|
|
frames_tracked = [] |
|
|
for i, frame in enumerate(frames): |
|
|
frame_draw = frame.copy() |
|
|
draw = ImageDraw.Draw(frame_draw) |
|
|
draw.rectangle(boxes_dic[s][i], outline=(255, 0, 0), width=6) |
|
|
frames_tracked.append(frame_draw) |
|
|
|
|
|
|
|
|
tracked_frames = [np.array(frame) for frame in frames_tracked] |
|
|
if tracked_frames: |
|
|
tracked_clip = ImageSequenceClip(tracked_frames, fps=25.0) |
|
|
tracked_video_path = os.path.join(output_path, 'video_tracked' + str(s+1) + '.mp4') |
|
|
tracked_clip.write_videofile(tracked_video_path, codec='libx264', audio=False, logger=None) |
|
|
tracked_clip.close() |
|
|
|
|
|
|
|
|
for i in range(number_of_speakers): |
|
|
save2npz(os.path.join(output_path, 'landmark', 'speaker' + str(i+1)+'.npz'), data=landmarks_dic[i]) |
|
|
|
|
|
|
|
|
face_frames = [np.array(frame) for frame in faces_dic[i]] |
|
|
if face_frames: |
|
|
face_clip = ImageSequenceClip(face_frames, fps=25.0) |
|
|
face_video_path = os.path.join(output_path, 'faces', 'speaker' + str(i+1) + '.mp4') |
|
|
face_clip.write_videofile(face_video_path, codec='libx264', audio=False, logger=None) |
|
|
face_clip.close() |
|
|
|
|
|
|
|
|
parts = video_input_path.split('/') |
|
|
video_name = parts[-1][:-4] |
|
|
if not os.path.exists(os.path.join(output_path, 'filename_input')): |
|
|
os.mkdir(os.path.join(output_path, 'filename_input')) |
|
|
csvfile = open(os.path.join(output_path, 'filename_input', str(video_name) + '.csv'), 'w') |
|
|
for i in range(number_of_speakers): |
|
|
csvfile.write('speaker' + str(i+1)+ ',0\n') |
|
|
csvfile.close() |
|
|
return os.path.join(output_path, 'filename_input', str(video_name) + '.csv') |
|
|
|
|
|
|
|
|
def crop_patch(mean_face_landmarks, video_pathname, landmarks, window_margin, start_idx, stop_idx, crop_height, crop_width, STD_SIZE=(256, 256)): |
|
|
|
|
|
"""Crop mouth patch |
|
|
:param str video_pathname: pathname for the video_dieo |
|
|
:param list landmarks: interpolated landmarks |
|
|
""" |
|
|
|
|
|
stablePntsIDs = [33, 36, 39, 42, 45] |
|
|
|
|
|
frame_idx = 0 |
|
|
frame_gen = read_video(video_pathname) |
|
|
while True: |
|
|
try: |
|
|
frame = frame_gen.__next__() |
|
|
except StopIteration: |
|
|
break |
|
|
if frame_idx == 0: |
|
|
q_frame, q_landmarks = deque(), deque() |
|
|
sequence = [] |
|
|
|
|
|
q_landmarks.append(landmarks[frame_idx]) |
|
|
q_frame.append(frame) |
|
|
if len(q_frame) == window_margin: |
|
|
smoothed_landmarks = np.mean(q_landmarks, axis=0) |
|
|
cur_landmarks = q_landmarks.popleft() |
|
|
cur_frame = q_frame.popleft() |
|
|
|
|
|
trans_frame, trans = warp_img( smoothed_landmarks[stablePntsIDs, :], |
|
|
mean_face_landmarks[stablePntsIDs, :], |
|
|
cur_frame, |
|
|
STD_SIZE) |
|
|
trans_landmarks = trans(cur_landmarks) |
|
|
|
|
|
sequence.append( cut_patch( trans_frame, |
|
|
trans_landmarks[start_idx:stop_idx], |
|
|
crop_height//2, |
|
|
crop_width//2,)) |
|
|
if frame_idx == len(landmarks)-1: |
|
|
|
|
|
if len(landmarks) < window_margin: |
|
|
smoothed_landmarks = np.mean(q_landmarks, axis=0) |
|
|
cur_landmarks = q_landmarks.popleft() |
|
|
cur_frame = q_frame.popleft() |
|
|
|
|
|
|
|
|
trans_frame, trans = warp_img(smoothed_landmarks[stablePntsIDs, :], |
|
|
mean_face_landmarks[stablePntsIDs, :], |
|
|
cur_frame, |
|
|
STD_SIZE) |
|
|
trans_landmarks = trans(cur_landmarks) |
|
|
|
|
|
sequence.append(cut_patch( trans_frame, |
|
|
trans_landmarks[start_idx:stop_idx], |
|
|
crop_height//2, |
|
|
crop_width//2,)) |
|
|
|
|
|
while q_frame: |
|
|
cur_frame = q_frame.popleft() |
|
|
|
|
|
trans_frame = apply_transform( trans, cur_frame, STD_SIZE) |
|
|
|
|
|
trans_landmarks = trans(q_landmarks.popleft()) |
|
|
|
|
|
sequence.append( cut_patch( trans_frame, |
|
|
trans_landmarks[start_idx:stop_idx], |
|
|
crop_height//2, |
|
|
crop_width//2,)) |
|
|
return np.array(sequence) |
|
|
frame_idx += 1 |
|
|
return None |
|
|
|
|
|
def landmarks_interpolate(landmarks): |
|
|
|
|
|
"""Interpolate landmarks |
|
|
param list landmarks: landmarks detected in raw videos |
|
|
""" |
|
|
|
|
|
valid_frames_idx = [idx for idx, _ in enumerate(landmarks) if _ is not None] |
|
|
if not valid_frames_idx: |
|
|
return None |
|
|
for idx in range(1, len(valid_frames_idx)): |
|
|
if valid_frames_idx[idx] - valid_frames_idx[idx-1] == 1: |
|
|
continue |
|
|
else: |
|
|
landmarks = linear_interpolate(landmarks, valid_frames_idx[idx-1], valid_frames_idx[idx]) |
|
|
valid_frames_idx = [idx for idx, _ in enumerate(landmarks) if _ is not None] |
|
|
|
|
|
if valid_frames_idx: |
|
|
landmarks[:valid_frames_idx[0]] = [landmarks[valid_frames_idx[0]]] * valid_frames_idx[0] |
|
|
landmarks[valid_frames_idx[-1]:] = [landmarks[valid_frames_idx[-1]]] * (len(landmarks) - valid_frames_idx[-1]) |
|
|
valid_frames_idx = [idx for idx, _ in enumerate(landmarks) if _ is not None] |
|
|
assert len(valid_frames_idx) == len(landmarks), "not every frame has landmark" |
|
|
return landmarks |
|
|
|
|
|
def crop_mouth(video_direc, landmark_direc, filename_path, save_direc, convert_gray=False, testset_only=False): |
|
|
lines = open(filename_path).read().splitlines() |
|
|
lines = list(filter(lambda x: 'test' in x, lines)) if testset_only else lines |
|
|
|
|
|
for filename_idx, line in enumerate(lines): |
|
|
|
|
|
filename, person_id = line.split(',') |
|
|
print('idx: {} \tProcessing.\t{}'.format(filename_idx, filename)) |
|
|
|
|
|
video_pathname = os.path.join(video_direc, filename+'.mp4') |
|
|
landmarks_pathname = os.path.join(landmark_direc, filename+'.npz') |
|
|
dst_pathname = os.path.join( save_direc, filename+'.npz') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
multi_sub_landmarks = np.load(landmarks_pathname, allow_pickle=True)['data'] |
|
|
landmarks = [None] * len(multi_sub_landmarks) |
|
|
for frame_idx in range(len(landmarks)): |
|
|
try: |
|
|
|
|
|
landmarks[frame_idx] = multi_sub_landmarks[frame_idx][int(person_id)] |
|
|
except (IndexError, TypeError): |
|
|
continue |
|
|
|
|
|
|
|
|
preprocessed_landmarks = landmarks_interpolate(landmarks) |
|
|
if not preprocessed_landmarks: |
|
|
continue |
|
|
|
|
|
|
|
|
mean_face_landmarks = np.load('assets/20words_mean_face.npy') |
|
|
sequence = crop_patch(mean_face_landmarks, video_pathname, preprocessed_landmarks, 12, 48, 68, 96, 96) |
|
|
assert sequence is not None, "cannot crop from {}.".format(filename) |
|
|
|
|
|
|
|
|
data = convert_bgr2gray(sequence) if convert_gray else sequence[...,::-1] |
|
|
save2npz(dst_pathname, data=data) |
|
|
|
|
|
def convert_video_fps(input_file, output_file, target_fps=25): |
|
|
"""Convert video to target FPS using moviepy""" |
|
|
video = VideoFileClip(input_file) |
|
|
video_fps = video.fps |
|
|
|
|
|
if video_fps != target_fps: |
|
|
video.write_videofile( |
|
|
output_file, |
|
|
fps=target_fps, |
|
|
codec='libx264', |
|
|
audio_codec='aac', |
|
|
temp_audiofile='temp-audio.m4a', |
|
|
remove_temp=True, |
|
|
) |
|
|
else: |
|
|
|
|
|
import shutil |
|
|
shutil.copy2(input_file, output_file) |
|
|
|
|
|
video.close() |
|
|
print(f'Video has been converted to {target_fps} fps and saved to {output_file}') |
|
|
|
|
|
def extract_audio(video_file, audio_output_file, sample_rate=16000): |
|
|
"""Extract audio from video using moviepy""" |
|
|
video = VideoFileClip(video_file) |
|
|
audio = video.audio |
|
|
|
|
|
|
|
|
audio.write_audiofile(audio_output_file, fps=sample_rate, nbytes=2, codec='pcm_s16le') |
|
|
|
|
|
video.close() |
|
|
audio.close() |
|
|
|
|
|
def merge_video_audio(video_file, audio_file, output_file): |
|
|
"""Merge video and audio using moviepy""" |
|
|
video = VideoFileClip(video_file) |
|
|
audio = AudioFileClip(audio_file) |
|
|
|
|
|
|
|
|
set_audio_fn = getattr(video, "set_audio", None) |
|
|
if callable(set_audio_fn): |
|
|
final_video = set_audio_fn(audio) |
|
|
else: |
|
|
with_audio_fn = getattr(video, "with_audio", None) |
|
|
if not callable(with_audio_fn): |
|
|
video.close() |
|
|
audio.close() |
|
|
raise AttributeError("VideoFileClip object lacks both set_audio and with_audio methods") |
|
|
final_video = with_audio_fn(audio) |
|
|
|
|
|
|
|
|
final_video.write_videofile(output_file, codec='libx264', audio_codec='aac', temp_audiofile='temp-audio.m4a', remove_temp=True) |
|
|
|
|
|
|
|
|
video.close() |
|
|
audio.close() |
|
|
final_video.close() |
|
|
|
|
|
def process_video(input_file, output_path, number_of_speakers=2, |
|
|
detect_every_N_frame=8, scalar_face_detection=1.5, |
|
|
config_path="checkpoints/vox2/conf.yml", |
|
|
cuda_device=None): |
|
|
"""Main processing function for video speaker separation""" |
|
|
|
|
|
|
|
|
if cuda_device is not None: |
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = str(cuda_device) |
|
|
|
|
|
|
|
|
os.makedirs(output_path, exist_ok=True) |
|
|
|
|
|
|
|
|
temp_25fps_file = os.path.join(output_path, 'temp_25fps.mp4') |
|
|
convert_video_fps(input_file, temp_25fps_file, target_fps=25) |
|
|
|
|
|
|
|
|
filename_path = detectface(video_input_path=temp_25fps_file, |
|
|
output_path=output_path, |
|
|
detect_every_N_frame=detect_every_N_frame, |
|
|
scalar_face_detection=scalar_face_detection, |
|
|
number_of_speakers=number_of_speakers) |
|
|
|
|
|
|
|
|
audio_output = os.path.join(output_path, 'audio.wav') |
|
|
extract_audio(temp_25fps_file, audio_output, sample_rate=16000) |
|
|
|
|
|
|
|
|
crop_mouth(video_direc=os.path.join(output_path, "faces"), |
|
|
landmark_direc=os.path.join(output_path, "landmark"), |
|
|
filename_path=filename_path, |
|
|
save_direc=os.path.join(output_path, "mouthroi"), |
|
|
convert_gray=True, |
|
|
testset_only=False) |
|
|
|
|
|
|
|
|
audiomodel = Dolphin.from_pretrained("JusperLee/Dolphin") |
|
|
|
|
|
audiomodel.cuda() |
|
|
audiomodel.eval() |
|
|
|
|
|
|
|
|
with torch.no_grad(): |
|
|
for i in range(number_of_speakers): |
|
|
mouth_roi = np.load(os.path.join(output_path, "mouthroi", f"speaker{i+1}.npz"))["data"] |
|
|
mouth_roi = get_preprocessing_pipelines()["val"](mouth_roi) |
|
|
|
|
|
mix, sr = torchaudio.load(audio_output) |
|
|
mix = mix.cuda().mean(dim=0) |
|
|
|
|
|
window_size = 4 * sr |
|
|
hop_size = 4 * sr |
|
|
|
|
|
all_estimates = [] |
|
|
|
|
|
|
|
|
start_idx = 0 |
|
|
while start_idx < len(mix): |
|
|
end_idx = min(start_idx + window_size, len(mix)) |
|
|
window_mix = mix[start_idx:end_idx] |
|
|
|
|
|
start_frame = int(start_idx / sr * 25) |
|
|
end_frame = int(end_idx / sr * 25) |
|
|
end_frame = min(end_frame, len(mouth_roi)) |
|
|
window_mouth_roi = mouth_roi[start_frame:end_frame] |
|
|
|
|
|
est_sources = audiomodel(window_mix[None], |
|
|
torch.from_numpy(window_mouth_roi[None, None]).float().cuda()) |
|
|
|
|
|
all_estimates.append({ |
|
|
'start': start_idx, |
|
|
'end': end_idx, |
|
|
'estimate': est_sources[0].cpu() |
|
|
}) |
|
|
|
|
|
start_idx += hop_size |
|
|
|
|
|
if start_idx >= len(mix): |
|
|
break |
|
|
|
|
|
output_length = len(mix) |
|
|
merged_output = torch.zeros(1, output_length) |
|
|
weights = torch.zeros(output_length) |
|
|
|
|
|
for est in all_estimates: |
|
|
window_len = est['end'] - est['start'] |
|
|
hann_window = torch.hann_window(window_len) |
|
|
|
|
|
merged_output[0, est['start']:est['end']] += est['estimate'][0, :window_len] * hann_window |
|
|
weights[est['start']:est['end']] += hann_window |
|
|
|
|
|
merged_output[:, weights > 0] /= weights[weights > 0] |
|
|
|
|
|
torchaudio.save(os.path.join(output_path, f"speaker{i+1}_est.wav"), merged_output, sr) |
|
|
|
|
|
|
|
|
|
|
|
output_files = [] |
|
|
for i in range(number_of_speakers): |
|
|
video_input = os.path.join(output_path, f"video_tracked{i+1}.mp4") |
|
|
audio_input = os.path.join(output_path, f"speaker{i+1}_est.wav") |
|
|
video_output = os.path.join(output_path, f"s{i+1}.mp4") |
|
|
|
|
|
merge_video_audio(video_input, audio_input, video_output) |
|
|
output_files.append(video_output) |
|
|
|
|
|
|
|
|
if os.path.exists(temp_25fps_file): |
|
|
os.remove(temp_25fps_file) |
|
|
|
|
|
return output_files |
|
|
|
|
|
if __name__ == '__main__': |
|
|
parser = argparse.ArgumentParser(description='Video Speaker Separation using Dolphin model') |
|
|
parser.add_argument('--input', '-i', type=str, required=True, |
|
|
help='Path to input video file') |
|
|
parser.add_argument('--output', '-o', type=str, default=None, |
|
|
help='Output directory path (default: creates directory based on input filename)') |
|
|
parser.add_argument('--speakers', '-s', type=int, default=2, |
|
|
help='Number of speakers to separate (default: 2)') |
|
|
parser.add_argument('--detect-every-n', type=int, default=8, |
|
|
help='Detect faces every N frames (default: 8)') |
|
|
parser.add_argument('--face-scale', type=float, default=1.5, |
|
|
help='Face detection bounding box scale factor (default: 1.5)') |
|
|
parser.add_argument('--cuda-device', type=int, default=0, |
|
|
help='CUDA device ID to use (default: 0, set to -1 for CPU)') |
|
|
parser.add_argument('--config', type=str, default="checkpoints/vox2/conf.yml", |
|
|
help='Path to model configuration file') |
|
|
|
|
|
args = parser.parse_args() |
|
|
|
|
|
|
|
|
if not os.path.exists(args.input): |
|
|
print(f"Error: Input file '{args.input}' does not exist") |
|
|
exit(1) |
|
|
|
|
|
|
|
|
if args.output is None: |
|
|
input_basename = os.path.splitext(os.path.basename(args.input))[0] |
|
|
args.output = os.path.join(os.path.dirname(args.input), input_basename + "_output") |
|
|
|
|
|
|
|
|
cuda_device = args.cuda_device if args.cuda_device >= 0 else None |
|
|
|
|
|
print(f"Processing video: {args.input}") |
|
|
print(f"Output directory: {args.output}") |
|
|
print(f"Number of speakers: {args.speakers}") |
|
|
print(f"CUDA device: {cuda_device if cuda_device is not None else 'CPU'}") |
|
|
|
|
|
|
|
|
output_files = process_video( |
|
|
input_file=args.input, |
|
|
output_path=args.output, |
|
|
number_of_speakers=args.speakers, |
|
|
detect_every_N_frame=args.detect_every_n, |
|
|
scalar_face_detection=args.face_scale, |
|
|
config_path=args.config, |
|
|
cuda_device=cuda_device |
|
|
) |
|
|
|
|
|
print("\nProcessing completed!") |
|
|
print("Output files:") |
|
|
for i, output_file in enumerate(output_files): |
|
|
print(f" Speaker {i+1}: {output_file}") |
|
|
|