Auto-ML / app.py
Jurk06's picture
Update app.py
f957c43 verified
import gradio as gr
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.impute import SimpleImputer
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor, GradientBoostingClassifier, GradientBoostingRegressor
from sklearn.linear_model import LogisticRegression, LinearRegression, Ridge
from sklearn.svm import SVC, SVR
from sklearn.neighbors import KNeighborsClassifier, KNeighborsRegressor
from sklearn.metrics import classification_report, mean_squared_error, r2_score, precision_score, recall_score, f1_score
from io import StringIO
import requests
# Helper functions
def load_data(file=None, url=None):
if url:
content = requests.get(url).content.decode('utf-8')
df = pd.read_csv(StringIO(content))
else:
df = pd.read_csv(file.name)
return df
def basic_eda(df):
info = {
"Shape": df.shape,
"Columns": df.columns.tolist(),
"Missing Values": df.isnull().sum().to_dict(),
"Data Types": df.dtypes.astype(str).to_dict(),
"Description": df.describe(include='all').to_dict(),
}
return info
def impute_missing(df):
num_cols = df.select_dtypes(include=np.number).columns.tolist()
cat_cols = df.select_dtypes(exclude=np.number).columns.tolist()
if num_cols:
imputed = SimpleImputer(strategy='mean').fit_transform(df[num_cols])
df[num_cols] = pd.DataFrame(imputed, columns=num_cols, index=df.index)
if cat_cols:
imputed = SimpleImputer(strategy='most_frequent').fit_transform(df[cat_cols])
df[cat_cols] = pd.DataFrame(imputed, columns=cat_cols, index=df.index)
return df
def detect_outliers(df):
numeric_df = df.select_dtypes(include=np.number)
z_scores = (numeric_df - numeric_df.mean()) / numeric_df.std()
return df[(z_scores < 3).all(axis=1)]
def train_models(df, target, task):
X = df.drop(columns=[target])
y = df[target]
X = pd.get_dummies(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
results_table = []
if task == 'classification':
models = [
RandomForestClassifier(),
LogisticRegression(max_iter=1000),
GradientBoostingClassifier(),
KNeighborsClassifier(),
SVC()
]
for model in models:
model.fit(X_train, y_train)
y_train_pred = model.predict(X_train)
y_test_pred = model.predict(X_test)
results_table.append({
"Model": model.__class__.__name__,
"Train Precision": precision_score(y_train, y_train_pred, average='weighted', zero_division=0),
"Train Recall": recall_score(y_train, y_train_pred, average='weighted', zero_division=0),
"Train F1-Score": f1_score(y_train, y_train_pred, average='weighted', zero_division=0),
"Test Precision": precision_score(y_test, y_test_pred, average='weighted', zero_division=0),
"Test Recall": recall_score(y_test, y_test_pred, average='weighted', zero_division=0),
"Test F1-Score": f1_score(y_test, y_test_pred, average='weighted', zero_division=0)
})
else:
models = [
RandomForestRegressor(),
LinearRegression(),
GradientBoostingRegressor(),
KNeighborsRegressor(),
Ridge()
]
for model in models:
model.fit(X_train, y_train)
y_train_pred = model.predict(X_train)
y_test_pred = model.predict(X_test)
r2_train = r2_score(y_train, y_train_pred)
r2_test = r2_score(y_test, y_test_pred)
adj_r2_train = 1 - (1 - r2_train) * ((len(y_train) - 1)/(len(y_train) - X_train.shape[1] - 1))
adj_r2_test = 1 - (1 - r2_test) * ((len(y_test) - 1)/(len(y_test) - X_test.shape[1] - 1))
rmse_train = np.sqrt(mean_squared_error(y_train, y_train_pred))
rmse_test = np.sqrt(mean_squared_error(y_test, y_test_pred))
results_table.append({
"Model": model.__class__.__name__,
"Train R2": round(r2_train, 4),
"Train Adjusted R2": round(adj_r2_train, 4),
"Train RMSE": round(rmse_train, 4),
"Test R2": round(r2_test, 4),
"Test Adjusted R2": round(adj_r2_test, 4),
"Test RMSE": round(rmse_test, 4)
})
return pd.DataFrame(results_table)
def visualize(df, x_col, y_col):
plt.figure(figsize=(8, 6))
if y_col:
sns.scatterplot(data=df, x=x_col, y=y_col)
else:
sns.histplot(df[x_col], kde=True)
plt.tight_layout()
plt.savefig("plot.png")
plt.close()
return "plot.png"
# Gradio UI
def process(file, url, task, target, x_feature, y_feature):
df = load_data(file, url)
eda = basic_eda(df)
df = impute_missing(df)
df = detect_outliers(df)
plot_path = visualize(df, x_feature, y_feature)
results_df = train_models(df, target, task)
return eda, plot_path, results_df
demo = gr.Interface(
fn=process,
inputs=[
gr.File(label="Upload CSV File", file_types=['.csv']), #optional=True),
gr.Textbox(label="Or enter URL to CSV", placeholder="https://...", lines=1), #optional=True),
gr.Radio(["classification", "regression"], label="Select Task Type"),
gr.Textbox(label="Target Column Name"),
gr.Textbox(label="Feature for X-Axis (for visualization)"),
gr.Textbox(label="Feature for Y-Axis (optional, for scatter plot)"),
],
outputs=[
gr.JSON(label="Basic EDA"),
gr.Image(type="filepath", label="Feature Plot"),
gr.Dataframe(label="Model Performance")
],
title="AutoML Dashboard",
description="Upload a dataset or provide a URL. Select task type, enter target column, choose features to visualize, and evaluate models."
)
if __name__ == "__main__":
demo.launch()