Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,372 +1,259 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
import torchvision
|
| 3 |
-
from torchvision.models.detection import FasterRCNN_ResNet50_FPN_Weights
|
| 4 |
-
from
|
| 5 |
-
|
| 6 |
-
import
|
| 7 |
-
import
|
| 8 |
-
import matplotlib.patches as patches
|
| 9 |
-
import gradio as gr
|
| 10 |
-
import os
|
| 11 |
import sys
|
| 12 |
-
import
|
| 13 |
-
|
| 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
-
#
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
# Model 1: Faster R-CNN
|
| 20 |
-
model1 = torchvision.models.detection.fasterrcnn_resnet50_fpn(weights=FasterRCNN_ResNet50_FPN_Weights.DEFAULT)
|
| 21 |
-
model1.eval()
|
| 22 |
-
|
| 23 |
-
# Model 2: RetinaNet
|
| 24 |
-
model2 = torchvision.models.detection.retinanet_resnet50_fpn_v2(weights=torchvision.models.detection.RetinaNet_ResNet50_FPN_V2_Weights.DEFAULT)
|
| 25 |
-
model2.eval()
|
| 26 |
-
|
| 27 |
-
# Segmentation model
|
| 28 |
-
seg_model = torchvision.models.detection.maskrcnn_resnet50_fpn(weights=MaskRCNN_ResNet50_FPN_Weights.DEFAULT)
|
| 29 |
-
seg_model.eval()
|
| 30 |
-
|
| 31 |
-
return model1, model2, seg_model
|
| 32 |
|
| 33 |
-
#
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
'
|
| 39 |
-
'
|
| 40 |
-
'
|
| 41 |
-
'
|
| 42 |
-
'
|
| 43 |
-
'
|
| 44 |
-
'
|
| 45 |
-
'
|
| 46 |
-
'
|
| 47 |
-
'N/A', 'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
|
| 48 |
-
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A', 'book',
|
| 49 |
-
'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'
|
| 50 |
]
|
| 51 |
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
boxes = prediction['boxes'].cpu().numpy()
|
| 61 |
-
labels = prediction['labels'].cpu().numpy()
|
| 62 |
-
scores = prediction['scores'].cpu().numpy()
|
| 63 |
-
|
| 64 |
-
# Filter by threshold
|
| 65 |
-
keep = scores >= threshold
|
| 66 |
-
boxes = boxes[keep]
|
| 67 |
-
labels = labels[keep]
|
| 68 |
-
scores = scores[keep]
|
| 69 |
-
|
| 70 |
-
return boxes, labels, scores
|
| 71 |
-
|
| 72 |
-
def get_segmentation_prediction(model, image, threshold=0.5):
|
| 73 |
-
"""Get segmentation prediction"""
|
| 74 |
-
transform = MaskRCNN_ResNet50_FPN_Weights.DEFAULT.transforms()
|
| 75 |
-
image_tensor = transform(image).unsqueeze(0)
|
| 76 |
-
|
| 77 |
-
with torch.no_grad():
|
| 78 |
-
prediction = model(image_tensor)[0]
|
| 79 |
-
|
| 80 |
-
boxes = prediction['boxes'].cpu().numpy()
|
| 81 |
-
labels = prediction['labels'].cpu().numpy()
|
| 82 |
-
scores = prediction['scores'].cpu().numpy()
|
| 83 |
-
masks = prediction['masks'].cpu().numpy()
|
| 84 |
-
|
| 85 |
-
# Filter by threshold
|
| 86 |
-
keep = scores >= threshold
|
| 87 |
-
boxes = boxes[keep]
|
| 88 |
-
labels = labels[keep]
|
| 89 |
-
scores = scores[keep]
|
| 90 |
-
masks = masks[keep]
|
| 91 |
-
|
| 92 |
-
return boxes, labels, scores, masks
|
| 93 |
|
| 94 |
-
def
|
| 95 |
-
"""
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
output_path = f"{title.replace(' ', '_').lower()}.png"
|
| 116 |
-
plt.savefig(output_path)
|
| 117 |
-
plt.close()
|
| 118 |
-
return output_path
|
| 119 |
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
plt.figure(figsize=(10, 10))
|
| 124 |
-
plt.imshow(image_np)
|
| 125 |
-
ax = plt.gca()
|
| 126 |
-
|
| 127 |
-
# Random colors for masks
|
| 128 |
-
colors = plt.cm.rainbow(np.linspace(0, 1, len(masks)))
|
| 129 |
-
|
| 130 |
-
for box, label, score, mask, color in zip(boxes, labels, scores, masks, colors):
|
| 131 |
-
# Draw bounding box
|
| 132 |
-
x1, y1, x2, y2 = box
|
| 133 |
-
rect = patches.Rectangle((x1, y1), x2 - x1, y2 - y1,
|
| 134 |
-
linewidth=2, edgecolor='r', facecolor='none')
|
| 135 |
-
ax.add_patch(rect)
|
| 136 |
-
|
| 137 |
-
# Add text
|
| 138 |
-
class_name = COCO_INSTANCE_CATEGORY_NAMES[label]
|
| 139 |
-
ax.text(x1, y1-10, f'{class_name}: {score:.2f}',
|
| 140 |
-
bbox=dict(facecolor='yellow', alpha=0.5),
|
| 141 |
-
fontsize=12, color='black')
|
| 142 |
-
|
| 143 |
-
# Draw mask
|
| 144 |
-
mask_image = mask[0, :, :] # First channel
|
| 145 |
-
mask_overlay = np.zeros_like(image_np, dtype=np.uint8)
|
| 146 |
-
for c in range(3):
|
| 147 |
-
mask_overlay[:, :, c] = np.where(mask_image > 0.5,
|
| 148 |
-
int(color[c] * 255), 0)
|
| 149 |
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
mask_bool = mask_image > 0.5
|
| 153 |
-
for c in range(3):
|
| 154 |
-
image_np[:, :, c] = np.where(
|
| 155 |
-
mask_bool,
|
| 156 |
-
image_np[:, :, c] * (1-alpha) + mask_overlay[:, :, c] * alpha,
|
| 157 |
-
image_np[:, :, c]
|
| 158 |
-
)
|
| 159 |
-
|
| 160 |
-
plt.imshow(image_np)
|
| 161 |
-
plt.title(title)
|
| 162 |
-
plt.axis('off')
|
| 163 |
-
plt.tight_layout()
|
| 164 |
-
|
| 165 |
-
# Save the figure
|
| 166 |
-
output_path = f"{title.replace(' ', '_').lower()}.png"
|
| 167 |
-
plt.savefig(output_path)
|
| 168 |
-
plt.close()
|
| 169 |
-
return output_path
|
| 170 |
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
# In a real app, you'd use proper metrics like mAP
|
| 174 |
-
# For simplicity, we'll use:
|
| 175 |
-
# 1. Number of detections
|
| 176 |
-
# 2. Average confidence score
|
| 177 |
-
# 3. Number of unique classes detected
|
| 178 |
-
|
| 179 |
-
num_detections = len(boxes)
|
| 180 |
-
avg_confidence = np.mean(scores) if len(scores) > 0 else 0
|
| 181 |
-
unique_classes = len(set(labels))
|
| 182 |
-
|
| 183 |
-
return {
|
| 184 |
-
"num_detections": num_detections,
|
| 185 |
-
"avg_confidence": avg_confidence,
|
| 186 |
-
"unique_classes": unique_classes,
|
| 187 |
-
"total_score": num_detections * avg_confidence + unique_classes # Simple combined metric
|
| 188 |
-
}
|
| 189 |
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
score2 = metrics2["total_score"]
|
| 213 |
-
|
| 214 |
-
if score1 > score2:
|
| 215 |
-
winner = "Model 1 (Faster R-CNN)"
|
| 216 |
-
winning_score = score1
|
| 217 |
-
losing_score = score2
|
| 218 |
-
elif score2 > score1:
|
| 219 |
-
winner = "Model 2 (RetinaNet)"
|
| 220 |
-
winning_score = score2
|
| 221 |
-
losing_score = score1
|
| 222 |
-
else:
|
| 223 |
-
winner = "Tie"
|
| 224 |
-
winning_score = score1
|
| 225 |
-
losing_score = score2
|
| 226 |
-
|
| 227 |
-
user_correct = (user_prediction == "Model 1" and winner == "Model 1 (Faster R-CNN)") or \
|
| 228 |
-
(user_prediction == "Model 2" and winner == "Model 2 (RetinaNet)") or \
|
| 229 |
-
(user_prediction == "Tie" and winner == "Tie")
|
| 230 |
-
|
| 231 |
-
result_message = f"Winner: {winner} (Score: {winning_score:.2f} vs {losing_score:.2f})\n"
|
| 232 |
-
result_message += f"Your prediction: {user_prediction} - {'Correct!' if user_correct else 'Incorrect!'}\n\n"
|
| 233 |
-
result_message += f"Model 1 detected {metrics1['num_detections']} objects with {metrics1['unique_classes']} unique classes.\n"
|
| 234 |
-
result_message += f"Model 2 detected {metrics2['num_detections']} objects with {metrics2['unique_classes']} unique classes."
|
| 235 |
-
|
| 236 |
-
return {"status": "success", "message": result_message}, result1, result2, None, None
|
| 237 |
-
|
| 238 |
-
elif task_type == "Instance Segmentation":
|
| 239 |
-
# Only using one model for segmentation for now
|
| 240 |
-
boxes, labels, scores, masks = get_segmentation_prediction(SEG_MODEL, image, confidence_threshold)
|
| 241 |
-
seg_result = visualize_segmentation(image, boxes, labels, scores, masks, "Mask R-CNN Results")
|
| 242 |
-
|
| 243 |
-
# Also get detection results for comparison
|
| 244 |
-
boxes1, labels1, scores1 = get_prediction(MODEL1, image, confidence_threshold)
|
| 245 |
-
det_result = visualize_detection(image, boxes1, labels1, scores1, "Detection Results")
|
| 246 |
-
|
| 247 |
-
metrics_seg = calculate_metrics(boxes, labels, scores)
|
| 248 |
-
metrics_det = calculate_metrics(boxes1, labels1, scores1)
|
| 249 |
-
|
| 250 |
-
result_message = f"Segmentation detected {metrics_seg['num_detections']} objects with {metrics_seg['unique_classes']} unique classes.\n"
|
| 251 |
-
result_message += f"The segmentation model provides pixel-level masks for each detected object."
|
| 252 |
-
|
| 253 |
-
return {"status": "success", "message": result_message}, None, None, det_result, seg_result
|
| 254 |
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 258 |
except Exception as e:
|
| 259 |
-
print(f"
|
| 260 |
-
import traceback
|
| 261 |
traceback.print_exc(file=sys.stderr)
|
| 262 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 263 |
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
gr.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 269 |
|
| 270 |
-
with gr.
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
label="Select Task",
|
| 277 |
-
value="Object Detection"
|
| 278 |
-
)
|
| 279 |
-
|
| 280 |
-
with gr.Row():
|
| 281 |
-
with gr.Column(scale=1, visible=True) as detection_options:
|
| 282 |
-
user_prediction = gr.Radio(
|
| 283 |
-
["Model 1", "Model 2", "Tie"],
|
| 284 |
-
label="Which model will perform better?",
|
| 285 |
-
value="Model 1"
|
| 286 |
-
)
|
| 287 |
-
|
| 288 |
-
confidence = gr.Slider(
|
| 289 |
-
minimum=0.0, maximum=1.0, value=0.5, step=0.05,
|
| 290 |
-
label="Confidence Threshold"
|
| 291 |
-
)
|
| 292 |
-
|
| 293 |
-
submit_btn = gr.Button("Run Comparison", variant="primary")
|
| 294 |
|
| 295 |
-
with gr.
|
| 296 |
-
|
| 297 |
-
|
|
|
|
|
|
|
| 298 |
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
if example_list:
|
| 321 |
-
gr.Examples(
|
| 322 |
-
examples=example_list,
|
| 323 |
-
inputs=input_image,
|
| 324 |
-
label="Example Images"
|
| 325 |
-
)
|
| 326 |
-
|
| 327 |
-
# Event handlers
|
| 328 |
-
def update_task_visibility(task):
|
| 329 |
-
if task == "Object Detection":
|
| 330 |
-
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
|
| 331 |
-
else:
|
| 332 |
-
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=True)
|
| 333 |
-
|
| 334 |
-
task_type.change(
|
| 335 |
-
fn=update_task_visibility,
|
| 336 |
-
inputs=task_type,
|
| 337 |
-
outputs=[detection_options, segmentation_results, detection_results, segmentation_results]
|
| 338 |
)
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 345 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 346 |
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
- The segmentation model is Mask R-CNN with ResNet50 backbone, which provides pixel-level masks in addition to bounding boxes.
|
| 357 |
-
|
| 358 |
-
### How is the winner determined?
|
| 359 |
-
The winner is determined based on a combined score of:
|
| 360 |
-
1. Number of objects detected
|
| 361 |
-
2. Average confidence score
|
| 362 |
-
3. Number of unique classes detected
|
| 363 |
-
|
| 364 |
-
Can you predict which model will perform better on your image?
|
| 365 |
-
""")
|
| 366 |
|
| 367 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 368 |
|
| 369 |
-
# Launch the app
|
| 370 |
if __name__ == "__main__":
|
| 371 |
-
|
| 372 |
-
app.launch(debug=True)
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torchvision
|
| 3 |
+
from torchvision.models.detection import FasterRCNN_ResNet50_FPN_Weights
|
| 4 |
+
from PIL import Image, ImageDraw, ImageFont
|
| 5 |
+
import numpy as np
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import os
|
|
|
|
|
|
|
|
|
|
| 8 |
import sys
|
| 9 |
+
import uuid # For unique filenames
|
| 10 |
+
import traceback # For detailed error logging
|
| 11 |
|
| 12 |
+
# --- Model Loading ---
|
| 13 |
+
# Model A
|
| 14 |
+
model_A = torchvision.models.detection.fasterrcnn_resnet50_fpn(weights=FasterRCNN_ResNet50_FPN_Weights.DEFAULT)
|
| 15 |
+
model_A.eval()
|
| 16 |
|
| 17 |
+
# Model B (same architecture, will use a different threshold in practice)
|
| 18 |
+
model_B = torchvision.models.detection.fasterrcnn_resnet50_fpn(weights=FasterRCNN_ResNet50_FPN_Weights.DEFAULT)
|
| 19 |
+
model_B.eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
+
# --- COCO Class Names ---
|
| 22 |
+
COCO_INSTANCE_CATEGORY_NAMES = [
|
| 23 |
+
'__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
|
| 24 |
+
'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A', 'stop sign',
|
| 25 |
+
'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
|
| 26 |
+
'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack', 'umbrella', 'N/A', 'N/A',
|
| 27 |
+
'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',
|
| 28 |
+
'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket',
|
| 29 |
+
'bottle', 'N/A', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl',
|
| 30 |
+
'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',
|
| 31 |
+
'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table',
|
| 32 |
+
'N/A', 'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
|
| 33 |
+
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A', 'book',
|
| 34 |
+
'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'
|
|
|
|
|
|
|
|
|
|
| 35 |
]
|
| 36 |
|
| 37 |
+
# --- Helper Functions ---
|
| 38 |
+
def get_font(size=15):
|
| 39 |
+
"""Attempts to load Arial font, falls back to PIL default."""
|
| 40 |
+
try:
|
| 41 |
+
return ImageFont.truetype("arial.ttf", size)
|
| 42 |
+
except IOError:
|
| 43 |
+
return ImageFont.load_default()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
+
def run_detection_on_image(image_pil, threshold, model_instance, model_name_str="Model"):
|
| 46 |
+
"""
|
| 47 |
+
Runs object detection on a PIL image and returns the path to the annotated image.
|
| 48 |
+
Uses PIL for all drawing operations.
|
| 49 |
+
"""
|
| 50 |
+
if image_pil is None:
|
| 51 |
+
print(f"{model_name_str}: Image is None, returning placeholder.", file=sys.stderr)
|
| 52 |
+
placeholder_img = Image.new('RGB', (400, 300), color='lightgray')
|
| 53 |
+
draw = ImageDraw.Draw(placeholder_img)
|
| 54 |
+
font = get_font(15)
|
| 55 |
+
text = f"{model_name_str}:\nNo image provided."
|
| 56 |
+
try:
|
| 57 |
+
bbox = draw.textbbox((0,0), text, font=font, align="center")
|
| 58 |
+
text_width, text_height = bbox[2] - bbox[0], bbox[3] - bbox[1]
|
| 59 |
+
except AttributeError: # Fallback for older Pillow
|
| 60 |
+
text_width = draw.textlength(text.split('\n')[0], font=font)
|
| 61 |
+
text_height = (font.getmetrics()[0] + font.getmetrics()[1]) * text.count('\n') + font.getmetrics()[0]
|
| 62 |
+
draw.text(((400 - text_width) / 2, (300 - text_height) / 2), text, fill="black", font=font, align="center")
|
| 63 |
+
output_filename = f"placeholder_{model_name_str.lower().replace(' ', '_')}_{uuid.uuid4()}.png"
|
| 64 |
+
placeholder_img.save(output_filename)
|
| 65 |
+
return output_filename
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
+
try:
|
| 68 |
+
print(f"{model_name_str}: Processing with threshold {threshold:.2f}", file=sys.stderr)
|
| 69 |
+
image_rgb = image_pil.convert("RGB") # Ensure 3-channel RGB
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
+
transform = FasterRCNN_ResNet50_FPN_Weights.DEFAULT.transforms()
|
| 72 |
+
image_tensor = transform(image_rgb).unsqueeze(0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
+
with torch.no_grad():
|
| 75 |
+
prediction = model_instance(image_tensor)[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
+
boxes, labels, scores = prediction['boxes'].cpu().numpy(), prediction['labels'].cpu().numpy(), prediction['scores'].cpu().numpy()
|
| 78 |
+
|
| 79 |
+
annotated_image = image_rgb.copy()
|
| 80 |
+
draw = ImageDraw.Draw(annotated_image)
|
| 81 |
+
label_font = get_font(12)
|
| 82 |
+
detections_made = False
|
| 83 |
+
|
| 84 |
+
for box, label_id, score in zip(boxes, labels, scores):
|
| 85 |
+
if score >= threshold:
|
| 86 |
+
detections_made = True
|
| 87 |
+
x1, y1, x2, y2 = box
|
| 88 |
+
draw.rectangle([(x1, y1), (x2, y2)], outline='red', width=3)
|
| 89 |
+
class_name = COCO_INSTANCE_CATEGORY_NAMES[label_id]
|
| 90 |
+
text_label = f'{class_name}: {score:.2f}'
|
| 91 |
+
|
| 92 |
+
try: tb_box = draw.textbbox((0,0), text_label, font=label_font) # Get text size
|
| 93 |
+
except AttributeError: tb_box = (0,0, draw.textlength(text_label, font=label_font), label_font.getmetrics()[0])
|
| 94 |
+
|
| 95 |
+
text_w, text_h = tb_box[2] - tb_box[0], tb_box[3] - tb_box[1]
|
| 96 |
+
bg_y1 = y1 - text_h - 4 if y1 - text_h - 4 > 0 else y1 + 2
|
| 97 |
+
draw.rectangle([x1, bg_y1, x1 + text_w + 4, bg_y1 + text_h + 4], fill='yellow')
|
| 98 |
+
draw.text((x1 + 2, bg_y1 + 2), text_label, fill='black', font=label_font)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
|
| 100 |
+
if not detections_made:
|
| 101 |
+
no_detection_font = get_font(max(15, min(annotated_image.width, annotated_image.height) // 20)) # Scaled font
|
| 102 |
+
no_detection_text = f"{model_name_str}:\nNo objects detected\n(Threshold: {threshold:.2f})"
|
| 103 |
+
try: bbox_nd = draw.textbbox((0,0), no_detection_text, font=no_detection_font, align="center")
|
| 104 |
+
except AttributeError: bbox_nd = (0,0, draw.textlength(no_detection_text.split('\n')[0], font=no_detection_font), (no_detection_font.getmetrics()[0] + no_detection_font.getmetrics()[1]) * no_detection_text.count('\n') + no_detection_font.getmetrics()[0])
|
| 105 |
+
text_w_nd, text_h_nd = bbox_nd[2]-bbox_nd[0], bbox_nd[3]-bbox_nd[1]
|
| 106 |
+
draw.text(((annotated_image.width - text_w_nd) / 2, (annotated_image.height - text_h_nd) / 2),
|
| 107 |
+
no_detection_text, fill="blue", font=no_detection_font, align="center", stroke_width=1, stroke_fill="white")
|
| 108 |
+
|
| 109 |
+
output_filename = f"detection_{model_name_str.lower().replace(' ', '_')}_{uuid.uuid4()}.png"
|
| 110 |
+
annotated_image.save(output_filename)
|
| 111 |
+
return output_filename
|
| 112 |
+
|
| 113 |
except Exception as e:
|
| 114 |
+
print(f"ERROR in {model_name_str} run_detection_on_image: {e}", file=sys.stderr)
|
|
|
|
| 115 |
traceback.print_exc(file=sys.stderr)
|
| 116 |
+
error_img = Image.new('RGB', (400, 300), color='lightpink')
|
| 117 |
+
draw = ImageDraw.Draw(error_img)
|
| 118 |
+
font = get_font(15)
|
| 119 |
+
text = f"{model_name_str} Error:\n{str(e)[:100]}" # Limit error message length
|
| 120 |
+
try: bbox_err = draw.textbbox((0,0), text, font=font, align="center")
|
| 121 |
+
except AttributeError: bbox_err = (0,0, draw.textlength(text.split('\n')[0], font=font), (font.getmetrics()[0] + font.getmetrics()[1]) * text.count('\n') + font.getmetrics()[0])
|
| 122 |
+
text_w_err, text_h_err = bbox_err[2]-bbox_err[0], bbox_err[3]-bbox_err[1]
|
| 123 |
+
draw.text(((400 - text_w_err) / 2, (300 - text_h_err) / 2), text, fill="black", font=font, align="center")
|
| 124 |
+
error_filename = f"error_{model_name_str.lower().replace(' ', '_')}_{uuid.uuid4()}.png"
|
| 125 |
+
error_img.save(error_filename)
|
| 126 |
+
return error_filename
|
| 127 |
+
|
| 128 |
+
# --- Prepare Example Images ---
|
| 129 |
+
example_files_src = ["TEST_IMG_1.jpg", "TEST_IMG_2.JPG", "TEST_IMG_3.jpg", "TEST_IMG_4.jpg"]
|
| 130 |
+
app_root = os.getcwd() # Assumes script runs from app root
|
| 131 |
+
example_paths_final = [os.path.join(app_root, f) for f in example_files_src]
|
| 132 |
+
valid_examples_list = [p for p in example_paths_final if os.path.exists(p)]
|
| 133 |
+
|
| 134 |
+
if not valid_examples_list:
|
| 135 |
+
print("Warning: No example images found at app root. Creating dummy examples.", file=sys.stderr)
|
| 136 |
+
try:
|
| 137 |
+
for i in range(1, 3):
|
| 138 |
+
dummy_fname = f"dummy_example_{i}.png"
|
| 139 |
+
if not os.path.exists(os.path.join(app_root, dummy_fname)):
|
| 140 |
+
img = Image.new('RGB', (300, 200), color=('darkred' if i == 1 else 'darkgreen'))
|
| 141 |
+
draw = ImageDraw.Draw(img)
|
| 142 |
+
font = get_font(25)
|
| 143 |
+
draw.text((10, 10), f"Dummy Example {i}", font=font, fill="white")
|
| 144 |
+
img.save(os.path.join(app_root, dummy_fname))
|
| 145 |
+
valid_examples_list = [os.path.join(app_root, f"dummy_example_{i}.png") for i in range(1, 3) if os.path.exists(os.path.join(app_root, f"dummy_example_{i}.png"))]
|
| 146 |
+
print(f"Created/using dummy examples: {valid_examples_list}", file=sys.stderr)
|
| 147 |
+
except Exception as e:
|
| 148 |
+
print(f"Failed to create dummy examples: {e}", file=sys.stderr)
|
| 149 |
+
valid_examples_list = []
|
| 150 |
+
|
| 151 |
+
print(f"Final list of examples to use: {valid_examples_list}", file=sys.stderr)
|
| 152 |
+
|
| 153 |
+
# --- Gradio UI Definition ---
|
| 154 |
+
with gr.Blocks(theme=gr.themes.Soft(primary_hue=gr.themes.colors.blue, secondary_hue=gr.themes.colors.sky)) as demo:
|
| 155 |
+
gr.Markdown("# 🖼️ Object Detection Game: Model vs. Model 🏆")
|
| 156 |
+
gr.Markdown("Can you guess which model configuration will perform better on your image?")
|
| 157 |
|
| 158 |
+
# --- Output Display Area (initially hidden) ---
|
| 159 |
+
with gr.Row(visible=False) as results_feedback_row:
|
| 160 |
+
user_guess_feedback_display = gr.Markdown("")
|
| 161 |
+
with gr.Row(visible=False) as results_images_row:
|
| 162 |
+
output_img_model_A = gr.Image(label="Model A Output", type="filepath", interactive=False)
|
| 163 |
+
output_img_model_B = gr.Image(label="Model B Output", type="filepath", interactive=False)
|
| 164 |
+
|
| 165 |
+
# --- Input and Controls Area ---
|
| 166 |
+
with gr.Row():
|
| 167 |
+
image_uploader = gr.Image(type="pil", label="🖼️ Upload Your Image Here")
|
| 168 |
|
| 169 |
+
with gr.Column(scale=1): # Control panel
|
| 170 |
+
task_type_selector = gr.Radio(
|
| 171 |
+
["Detect Objects", "Segment Objects (Coming Soon!)"],
|
| 172 |
+
label="🎯 1. Select Task:",
|
| 173 |
+
value="Detect Objects"
|
| 174 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 175 |
|
| 176 |
+
with gr.Group(visible=True) as detection_controls_group:
|
| 177 |
+
gr.Markdown("--- \n ### ⚔️ Detection Challenge Details:")
|
| 178 |
+
gr.Markdown("ทั้ง **Model A** และ **Model B** คือ Faster R-CNN (ResNet50 FPN).") # Thai for fun
|
| 179 |
+
gr.Markdown("- **Model A**: You control its confidence threshold.")
|
| 180 |
+
gr.Markdown("- **Model B**: Its threshold is `Model A Threshold - 0.15` (minimum 0.05).")
|
| 181 |
|
| 182 |
+
model_A_threshold_slider = gr.Slider(
|
| 183 |
+
minimum=0.1, maximum=0.95, value=0.5, step=0.05,
|
| 184 |
+
label="⚙️ 2. Confidence Threshold for Model A"
|
| 185 |
+
)
|
| 186 |
+
user_model_preference_guess = gr.Radio(
|
| 187 |
+
["Model A will be better", "Model B will be better", "They will be similar"],
|
| 188 |
+
label="🤔 3. Your Guess:",
|
| 189 |
+
value="Model A will be better"
|
| 190 |
+
)
|
| 191 |
+
run_game_button = gr.Button("🚀 Run Detection & Reveal Results!", variant="primary")
|
| 192 |
+
|
| 193 |
+
with gr.Group(visible=False) as segmentation_controls_group:
|
| 194 |
+
gr.Markdown("--- \n ### 🚧 Segmentation Challenge (Coming Soon!)")
|
| 195 |
+
gr.Markdown("This feature is under active development. Please choose 'Detect Objects' for now.")
|
| 196 |
+
|
| 197 |
+
if valid_examples_list:
|
| 198 |
+
gr.Examples(
|
| 199 |
+
examples=[[ex_path] for ex_path in valid_examples_list],
|
| 200 |
+
inputs=[image_uploader],
|
| 201 |
+
label="✨ Click an Example Image to Load",
|
| 202 |
+
# cache_examples=True # Set to True if examples are static and processing is heavy
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
)
|
| 204 |
+
|
| 205 |
+
# --- Event Handlers ---
|
| 206 |
+
def handle_task_selection(selected_task):
|
| 207 |
+
"""Updates visibility of control groups and hides results when task changes."""
|
| 208 |
+
show_detection = (selected_task == "Detect Objects")
|
| 209 |
+
return (
|
| 210 |
+
gr.update(visible=show_detection), # detection_controls_group
|
| 211 |
+
gr.update(visible=not show_detection), # segmentation_controls_group
|
| 212 |
+
gr.update(visible=False), # results_feedback_row
|
| 213 |
+
gr.update(visible=False) # results_images_row
|
| 214 |
)
|
| 215 |
+
|
| 216 |
+
task_type_selector.change(
|
| 217 |
+
fn=handle_task_selection,
|
| 218 |
+
inputs=task_type_selector,
|
| 219 |
+
outputs=[detection_controls_group, segmentation_controls_group, results_feedback_row, results_images_row]
|
| 220 |
+
)
|
| 221 |
+
|
| 222 |
+
def execute_detection_game(image_pil_data, chosen_task, user_guess_str, threshold_for_A):
|
| 223 |
+
"""Main game logic: processes image with both models and returns results."""
|
| 224 |
+
if image_pil_data is None:
|
| 225 |
+
msg = "⚠️ **Oops! Please upload an image first.**"
|
| 226 |
+
return gr.update(value=msg), gr.update(visible=True), gr.update(visible=False), gr.update(value=None), gr.update(value=None)
|
| 227 |
+
|
| 228 |
+
if chosen_task != "Detect Objects":
|
| 229 |
+
msg = f"⚠️ **Hold on!** '{chosen_task}' is not quite ready. Please select 'Detect Objects' to play."
|
| 230 |
+
return gr.update(value=msg), gr.update(visible=True), gr.update(visible=False), gr.update(value=None), gr.update(value=None)
|
| 231 |
+
|
| 232 |
+
threshold_for_B = max(0.05, threshold_for_A - 0.15) # Ensure threshold_B is not too low or negative
|
| 233 |
|
| 234 |
+
print(f"Player guessed: {user_guess_str}", file=sys.stderr)
|
| 235 |
+
print(f"Model A using threshold: {threshold_for_A:.2f}", file=sys.stderr)
|
| 236 |
+
print(f"Model B using threshold: {threshold_for_B:.2f}", file=sys.stderr)
|
| 237 |
+
|
| 238 |
+
output_path_A = run_detection_on_image(image_pil_data, threshold_for_A, model_A, "Model A")
|
| 239 |
+
output_path_B = run_detection_on_image(image_pil_data, threshold_for_B, model_B, "Model B")
|
| 240 |
+
|
| 241 |
+
feedback_text = (f"💬 You guessed: **{user_guess_str}**.\n\n"
|
| 242 |
+
f" দেখে নিন (See the results!): Model A (Threshold: {threshold_for_A:.2f}) vs. Model B (Threshold: {threshold_for_B:.2f})")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 243 |
|
| 244 |
+
return (
|
| 245 |
+
gr.update(value=feedback_text), # For user_guess_feedback_display
|
| 246 |
+
gr.update(visible=True), # Make results_feedback_row visible
|
| 247 |
+
gr.update(visible=True), # Make results_images_row visible
|
| 248 |
+
gr.update(value=output_path_A), # Set image for output_img_model_A
|
| 249 |
+
gr.update(value=output_path_B) # Set image for output_img_model_B
|
| 250 |
+
)
|
| 251 |
+
|
| 252 |
+
run_game_button.click(
|
| 253 |
+
fn=execute_detection_game,
|
| 254 |
+
inputs=[image_uploader, task_type_selector, user_model_preference_guess, model_A_threshold_slider],
|
| 255 |
+
outputs=[user_guess_feedback_display, results_feedback_row, results_images_row, output_img_model_A, output_img_model_B]
|
| 256 |
+
)
|
| 257 |
|
|
|
|
| 258 |
if __name__ == "__main__":
|
| 259 |
+
demo.launch(debug=True) # debug=True is helpful for development
|
|
|