Spaces:
Sleeping
Sleeping
add UI
Browse files
app.py
CHANGED
|
@@ -1,17 +1,38 @@
|
|
| 1 |
import torch
|
| 2 |
import torchvision
|
| 3 |
-
from torchvision.models.detection import FasterRCNN_ResNet50_FPN_Weights
|
|
|
|
| 4 |
from PIL import Image
|
| 5 |
import numpy as np
|
| 6 |
import matplotlib.pyplot as plt
|
|
|
|
| 7 |
import gradio as gr
|
| 8 |
import os
|
| 9 |
import sys
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
# COCO class names
|
| 16 |
COCO_INSTANCE_CATEGORY_NAMES = [
|
| 17 |
'__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
|
|
@@ -26,118 +47,326 @@ COCO_INSTANCE_CATEGORY_NAMES = [
|
|
| 26 |
'N/A', 'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
|
| 27 |
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A', 'book',
|
| 28 |
'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'
|
| 29 |
-
]
|
| 30 |
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
try:
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
-
if score >= threshold:
|
| 78 |
-
x1, y1, x2, y2 = box
|
| 79 |
-
ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1,
|
| 80 |
-
fill=False, color='red', linewidth=2))
|
| 81 |
-
class_name = COCO_INSTANCE_CATEGORY_NAMES[label]
|
| 82 |
-
ax.text(x1, y1, f'{class_name}: {score:.2f}', bbox=dict(facecolor='yellow', alpha=0.5),
|
| 83 |
-
fontsize=12, color='black')
|
| 84 |
-
|
| 85 |
-
plt.axis('off')
|
| 86 |
-
plt.tight_layout()
|
| 87 |
-
|
| 88 |
-
# Save the figure to return
|
| 89 |
-
output_path = "output.png"
|
| 90 |
-
plt.savefig(output_path)
|
| 91 |
-
plt.close()
|
| 92 |
-
return output_path
|
| 93 |
except Exception as e:
|
| 94 |
-
print(f"Error in
|
| 95 |
import traceback
|
| 96 |
traceback.print_exc(file=sys.stderr)
|
| 97 |
-
|
| 98 |
-
# Create an error image
|
| 99 |
-
error_img = Image.new('RGB', (400, 400), color='white')
|
| 100 |
-
plt.figure(figsize=(10, 10))
|
| 101 |
-
plt.imshow(error_img)
|
| 102 |
-
plt.text(0.5, 0.5, f"Error: {str(e)}",
|
| 103 |
-
horizontalalignment='center', verticalalignment='center',
|
| 104 |
-
transform=plt.gca().transAxes, fontsize=12, wrap=True)
|
| 105 |
-
plt.axis('off')
|
| 106 |
-
error_path = "error_output.png"
|
| 107 |
-
plt.savefig(error_path)
|
| 108 |
-
plt.close()
|
| 109 |
-
return error_path
|
| 110 |
-
|
| 111 |
-
# Create direct file paths for examples
|
| 112 |
-
# These exact filenames match what's visible in your repository
|
| 113 |
-
examples = [
|
| 114 |
-
os.path.join("/home/user/app", "TEST_IMG_1.jpg"),
|
| 115 |
-
os.path.join("/home/user/app", "TEST_IMG_2.JPG"),
|
| 116 |
-
os.path.join("/home/user/app", "TEST_IMG_3.jpg"),
|
| 117 |
-
os.path.join("/home/user/app", "TEST_IMG_4.jpg")
|
| 118 |
-
]
|
| 119 |
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
|
| 140 |
-
# Launch
|
| 141 |
if __name__ == "__main__":
|
| 142 |
-
|
| 143 |
-
|
|
|
|
| 1 |
import torch
|
| 2 |
import torchvision
|
| 3 |
+
from torchvision.models.detection import FasterRCNN_ResNet50_FPN_Weights, MaskRCNN_ResNet50_FPN_Weights
|
| 4 |
+
from torchvision.transforms import functional as F
|
| 5 |
from PIL import Image
|
| 6 |
import numpy as np
|
| 7 |
import matplotlib.pyplot as plt
|
| 8 |
+
import matplotlib.patches as patches
|
| 9 |
import gradio as gr
|
| 10 |
import os
|
| 11 |
import sys
|
| 12 |
+
import random
|
| 13 |
+
from typing import Tuple, List, Dict, Any, Optional
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
# Load models only once
|
| 17 |
+
def load_models():
|
| 18 |
+
print("Loading detection models...", file=sys.stderr)
|
| 19 |
+
# Model 1: Faster R-CNN
|
| 20 |
+
model1 = torchvision.models.detection.fasterrcnn_resnet50_fpn(weights=FasterRCNN_ResNet50_FPN_Weights.DEFAULT)
|
| 21 |
+
model1.eval()
|
| 22 |
+
|
| 23 |
+
# Model 2: RetinaNet
|
| 24 |
+
model2 = torchvision.models.detection.retinanet_resnet50_fpn_v2(weights=torchvision.models.detection.RetinaNet_ResNet50_FPN_V2_Weights.DEFAULT)
|
| 25 |
+
model2.eval()
|
| 26 |
+
|
| 27 |
+
# Segmentation model
|
| 28 |
+
seg_model = torchvision.models.detection.maskrcnn_resnet50_fpn(weights=MaskRCNN_ResNet50_FPN_Weights.DEFAULT)
|
| 29 |
+
seg_model.eval()
|
| 30 |
+
|
| 31 |
+
return model1, model2, seg_model
|
| 32 |
+
|
| 33 |
+
# Global models
|
| 34 |
+
MODEL1, MODEL2, SEG_MODEL = load_models()
|
| 35 |
+
|
| 36 |
# COCO class names
|
| 37 |
COCO_INSTANCE_CATEGORY_NAMES = [
|
| 38 |
'__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
|
|
|
|
| 47 |
'N/A', 'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
|
| 48 |
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A', 'book',
|
| 49 |
'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'
|
| 50 |
+
]
|
| 51 |
|
| 52 |
+
def get_prediction(model, image, threshold=0.5):
|
| 53 |
+
"""Get prediction from model"""
|
| 54 |
+
transform = FasterRCNN_ResNet50_FPN_Weights.DEFAULT.transforms()
|
| 55 |
+
image_tensor = transform(image).unsqueeze(0)
|
| 56 |
+
|
| 57 |
+
with torch.no_grad():
|
| 58 |
+
prediction = model(image_tensor)[0]
|
| 59 |
+
|
| 60 |
+
boxes = prediction['boxes'].cpu().numpy()
|
| 61 |
+
labels = prediction['labels'].cpu().numpy()
|
| 62 |
+
scores = prediction['scores'].cpu().numpy()
|
| 63 |
+
|
| 64 |
+
# Filter by threshold
|
| 65 |
+
keep = scores >= threshold
|
| 66 |
+
boxes = boxes[keep]
|
| 67 |
+
labels = labels[keep]
|
| 68 |
+
scores = scores[keep]
|
| 69 |
+
|
| 70 |
+
return boxes, labels, scores
|
| 71 |
+
|
| 72 |
+
def get_segmentation_prediction(model, image, threshold=0.5):
|
| 73 |
+
"""Get segmentation prediction"""
|
| 74 |
+
transform = MaskRCNN_ResNet50_FPN_Weights.DEFAULT.transforms()
|
| 75 |
+
image_tensor = transform(image).unsqueeze(0)
|
| 76 |
+
|
| 77 |
+
with torch.no_grad():
|
| 78 |
+
prediction = model(image_tensor)[0]
|
| 79 |
+
|
| 80 |
+
boxes = prediction['boxes'].cpu().numpy()
|
| 81 |
+
labels = prediction['labels'].cpu().numpy()
|
| 82 |
+
scores = prediction['scores'].cpu().numpy()
|
| 83 |
+
masks = prediction['masks'].cpu().numpy()
|
| 84 |
+
|
| 85 |
+
# Filter by threshold
|
| 86 |
+
keep = scores >= threshold
|
| 87 |
+
boxes = boxes[keep]
|
| 88 |
+
labels = labels[keep]
|
| 89 |
+
scores = scores[keep]
|
| 90 |
+
masks = masks[keep]
|
| 91 |
+
|
| 92 |
+
return boxes, labels, scores, masks
|
| 93 |
+
|
| 94 |
+
def visualize_detection(image, boxes, labels, scores, title="Detection Results"):
|
| 95 |
+
"""Visualize detection results"""
|
| 96 |
+
image_np = np.array(image)
|
| 97 |
+
plt.figure(figsize=(10, 10))
|
| 98 |
+
plt.imshow(image_np)
|
| 99 |
+
ax = plt.gca()
|
| 100 |
+
|
| 101 |
+
for box, label, score in zip(boxes, labels, scores):
|
| 102 |
+
x1, y1, x2, y2 = box
|
| 103 |
+
ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1,
|
| 104 |
+
fill=False, color='red', linewidth=2))
|
| 105 |
+
class_name = COCO_INSTANCE_CATEGORY_NAMES[label]
|
| 106 |
+
ax.text(x1, y1, f'{class_name}: {score:.2f}',
|
| 107 |
+
bbox=dict(facecolor='yellow', alpha=0.5),
|
| 108 |
+
fontsize=12, color='black')
|
| 109 |
+
|
| 110 |
+
plt.title(title)
|
| 111 |
+
plt.axis('off')
|
| 112 |
+
plt.tight_layout()
|
| 113 |
+
|
| 114 |
+
# Save the figure
|
| 115 |
+
output_path = f"{title.replace(' ', '_').lower()}.png"
|
| 116 |
+
plt.savefig(output_path)
|
| 117 |
+
plt.close()
|
| 118 |
+
return output_path
|
| 119 |
+
|
| 120 |
+
def visualize_segmentation(image, boxes, labels, scores, masks, title="Segmentation Results"):
|
| 121 |
+
"""Visualize segmentation results"""
|
| 122 |
+
image_np = np.array(image)
|
| 123 |
+
plt.figure(figsize=(10, 10))
|
| 124 |
+
plt.imshow(image_np)
|
| 125 |
+
ax = plt.gca()
|
| 126 |
+
|
| 127 |
+
# Random colors for masks
|
| 128 |
+
colors = plt.cm.rainbow(np.linspace(0, 1, len(masks)))
|
| 129 |
+
|
| 130 |
+
for box, label, score, mask, color in zip(boxes, labels, scores, masks, colors):
|
| 131 |
+
# Draw bounding box
|
| 132 |
+
x1, y1, x2, y2 = box
|
| 133 |
+
rect = patches.Rectangle((x1, y1), x2 - x1, y2 - y1,
|
| 134 |
+
linewidth=2, edgecolor='r', facecolor='none')
|
| 135 |
+
ax.add_patch(rect)
|
| 136 |
|
| 137 |
+
# Add text
|
| 138 |
+
class_name = COCO_INSTANCE_CATEGORY_NAMES[label]
|
| 139 |
+
ax.text(x1, y1-10, f'{class_name}: {score:.2f}',
|
| 140 |
+
bbox=dict(facecolor='yellow', alpha=0.5),
|
| 141 |
+
fontsize=12, color='black')
|
| 142 |
+
|
| 143 |
+
# Draw mask
|
| 144 |
+
mask_image = mask[0, :, :] # First channel
|
| 145 |
+
mask_overlay = np.zeros_like(image_np, dtype=np.uint8)
|
| 146 |
+
for c in range(3):
|
| 147 |
+
mask_overlay[:, :, c] = np.where(mask_image > 0.5,
|
| 148 |
+
int(color[c] * 255), 0)
|
| 149 |
+
|
| 150 |
+
# Add mask with transparency
|
| 151 |
+
alpha = 0.5
|
| 152 |
+
mask_bool = mask_image > 0.5
|
| 153 |
+
for c in range(3):
|
| 154 |
+
image_np[:, :, c] = np.where(
|
| 155 |
+
mask_bool,
|
| 156 |
+
image_np[:, :, c] * (1-alpha) + mask_overlay[:, :, c] * alpha,
|
| 157 |
+
image_np[:, :, c]
|
| 158 |
+
)
|
| 159 |
+
|
| 160 |
+
plt.imshow(image_np)
|
| 161 |
+
plt.title(title)
|
| 162 |
+
plt.axis('off')
|
| 163 |
+
plt.tight_layout()
|
| 164 |
+
|
| 165 |
+
# Save the figure
|
| 166 |
+
output_path = f"{title.replace(' ', '_').lower()}.png"
|
| 167 |
+
plt.savefig(output_path)
|
| 168 |
+
plt.close()
|
| 169 |
+
return output_path
|
| 170 |
+
|
| 171 |
+
def calculate_metrics(boxes, labels, scores):
|
| 172 |
+
"""Calculate simple metrics for model comparison"""
|
| 173 |
+
# In a real app, you'd use proper metrics like mAP
|
| 174 |
+
# For simplicity, we'll use:
|
| 175 |
+
# 1. Number of detections
|
| 176 |
+
# 2. Average confidence score
|
| 177 |
+
# 3. Number of unique classes detected
|
| 178 |
+
|
| 179 |
+
num_detections = len(boxes)
|
| 180 |
+
avg_confidence = np.mean(scores) if len(scores) > 0 else 0
|
| 181 |
+
unique_classes = len(set(labels))
|
| 182 |
+
|
| 183 |
+
return {
|
| 184 |
+
"num_detections": num_detections,
|
| 185 |
+
"avg_confidence": avg_confidence,
|
| 186 |
+
"unique_classes": unique_classes,
|
| 187 |
+
"total_score": num_detections * avg_confidence + unique_classes # Simple combined metric
|
| 188 |
+
}
|
| 189 |
+
|
| 190 |
+
def process_game(image, task_type, user_prediction, confidence_threshold=0.5):
|
| 191 |
+
"""Main game function that processes the image based on selected task type"""
|
| 192 |
+
if image is None:
|
| 193 |
+
return {
|
| 194 |
+
"status": "error",
|
| 195 |
+
"message": "Please upload an image to continue."
|
| 196 |
+
}, None, None, None, None
|
| 197 |
+
|
| 198 |
try:
|
| 199 |
+
if task_type == "Object Detection":
|
| 200 |
+
# Model 1: Faster R-CNN
|
| 201 |
+
boxes1, labels1, scores1 = get_prediction(MODEL1, image, confidence_threshold)
|
| 202 |
+
result1 = visualize_detection(image, boxes1, labels1, scores1, "Faster R-CNN Results")
|
| 203 |
+
metrics1 = calculate_metrics(boxes1, labels1, scores1)
|
| 204 |
+
|
| 205 |
+
# Model 2: RetinaNet
|
| 206 |
+
boxes2, labels2, scores2 = get_prediction(MODEL2, image, confidence_threshold)
|
| 207 |
+
result2 = visualize_detection(image, boxes2, labels2, scores2, "RetinaNet Results")
|
| 208 |
+
metrics2 = calculate_metrics(boxes2, labels2, scores2)
|
| 209 |
+
|
| 210 |
+
# Determine winner
|
| 211 |
+
score1 = metrics1["total_score"]
|
| 212 |
+
score2 = metrics2["total_score"]
|
| 213 |
+
|
| 214 |
+
if score1 > score2:
|
| 215 |
+
winner = "Model 1 (Faster R-CNN)"
|
| 216 |
+
winning_score = score1
|
| 217 |
+
losing_score = score2
|
| 218 |
+
elif score2 > score1:
|
| 219 |
+
winner = "Model 2 (RetinaNet)"
|
| 220 |
+
winning_score = score2
|
| 221 |
+
losing_score = score1
|
| 222 |
+
else:
|
| 223 |
+
winner = "Tie"
|
| 224 |
+
winning_score = score1
|
| 225 |
+
losing_score = score2
|
| 226 |
+
|
| 227 |
+
user_correct = (user_prediction == "Model 1" and winner == "Model 1 (Faster R-CNN)") or \
|
| 228 |
+
(user_prediction == "Model 2" and winner == "Model 2 (RetinaNet)") or \
|
| 229 |
+
(user_prediction == "Tie" and winner == "Tie")
|
| 230 |
+
|
| 231 |
+
result_message = f"Winner: {winner} (Score: {winning_score:.2f} vs {losing_score:.2f})\n"
|
| 232 |
+
result_message += f"Your prediction: {user_prediction} - {'Correct!' if user_correct else 'Incorrect!'}\n\n"
|
| 233 |
+
result_message += f"Model 1 detected {metrics1['num_detections']} objects with {metrics1['unique_classes']} unique classes.\n"
|
| 234 |
+
result_message += f"Model 2 detected {metrics2['num_detections']} objects with {metrics2['unique_classes']} unique classes."
|
| 235 |
+
|
| 236 |
+
return {"status": "success", "message": result_message}, result1, result2, None, None
|
| 237 |
+
|
| 238 |
+
elif task_type == "Instance Segmentation":
|
| 239 |
+
# Only using one model for segmentation for now
|
| 240 |
+
boxes, labels, scores, masks = get_segmentation_prediction(SEG_MODEL, image, confidence_threshold)
|
| 241 |
+
seg_result = visualize_segmentation(image, boxes, labels, scores, masks, "Mask R-CNN Results")
|
| 242 |
+
|
| 243 |
+
# Also get detection results for comparison
|
| 244 |
+
boxes1, labels1, scores1 = get_prediction(MODEL1, image, confidence_threshold)
|
| 245 |
+
det_result = visualize_detection(image, boxes1, labels1, scores1, "Detection Results")
|
| 246 |
+
|
| 247 |
+
metrics_seg = calculate_metrics(boxes, labels, scores)
|
| 248 |
+
metrics_det = calculate_metrics(boxes1, labels1, scores1)
|
| 249 |
+
|
| 250 |
+
result_message = f"Segmentation detected {metrics_seg['num_detections']} objects with {metrics_seg['unique_classes']} unique classes.\n"
|
| 251 |
+
result_message += f"The segmentation model provides pixel-level masks for each detected object."
|
| 252 |
+
|
| 253 |
+
return {"status": "success", "message": result_message}, None, None, det_result, seg_result
|
| 254 |
+
|
| 255 |
+
else:
|
| 256 |
+
return {"status": "error", "message": "Invalid task type selected."}, None, None, None, None
|
| 257 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 258 |
except Exception as e:
|
| 259 |
+
print(f"Error in process_game: {e}", file=sys.stderr)
|
| 260 |
import traceback
|
| 261 |
traceback.print_exc(file=sys.stderr)
|
| 262 |
+
return {"status": "error", "message": f"Error processing image: {str(e)}"}, None, None, None, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 263 |
|
| 264 |
+
def create_ui():
|
| 265 |
+
"""Create the Gradio UI for the game"""
|
| 266 |
+
with gr.Blocks(title="Object Detection Game") as app:
|
| 267 |
+
gr.Markdown("# 🎮 Computer Vision Model Comparison Game")
|
| 268 |
+
gr.Markdown("Upload an image, choose a task, and predict which model will perform better!")
|
| 269 |
+
|
| 270 |
+
with gr.Row():
|
| 271 |
+
with gr.Column(scale=1):
|
| 272 |
+
# Input components
|
| 273 |
+
input_image = gr.Image(type="pil", label="Upload Image")
|
| 274 |
+
task_type = gr.Radio(
|
| 275 |
+
["Object Detection", "Instance Segmentation"],
|
| 276 |
+
label="Select Task",
|
| 277 |
+
value="Object Detection"
|
| 278 |
+
)
|
| 279 |
+
|
| 280 |
+
with gr.Row():
|
| 281 |
+
with gr.Column(scale=1, visible=True) as detection_options:
|
| 282 |
+
user_prediction = gr.Radio(
|
| 283 |
+
["Model 1", "Model 2", "Tie"],
|
| 284 |
+
label="Which model will perform better?",
|
| 285 |
+
value="Model 1"
|
| 286 |
+
)
|
| 287 |
+
|
| 288 |
+
confidence = gr.Slider(
|
| 289 |
+
minimum=0.0, maximum=1.0, value=0.5, step=0.05,
|
| 290 |
+
label="Confidence Threshold"
|
| 291 |
+
)
|
| 292 |
+
|
| 293 |
+
submit_btn = gr.Button("Run Comparison", variant="primary")
|
| 294 |
+
|
| 295 |
+
with gr.Column(scale=1):
|
| 296 |
+
# Output components
|
| 297 |
+
result_msg = gr.JSON(label="Results")
|
| 298 |
+
|
| 299 |
+
# Detection results
|
| 300 |
+
with gr.Row(visible=True) as detection_results:
|
| 301 |
+
model1_output = gr.Image(type="filepath", label="Model 1 (Faster R-CNN)")
|
| 302 |
+
model2_output = gr.Image(type="filepath", label="Model 2 (RetinaNet)")
|
| 303 |
+
|
| 304 |
+
# Segmentation results
|
| 305 |
+
with gr.Row(visible=False) as segmentation_results:
|
| 306 |
+
detection_output = gr.Image(type="filepath", label="Detection")
|
| 307 |
+
segmentation_output = gr.Image(type="filepath", label="Segmentation")
|
| 308 |
+
|
| 309 |
+
# Example images
|
| 310 |
+
examples = [
|
| 311 |
+
os.path.join("/home/user/app", "TEST_IMG_1.jpg"),
|
| 312 |
+
os.path.join("/home/user/app", "TEST_IMG_2.JPG"),
|
| 313 |
+
os.path.join("/home/user/app", "TEST_IMG_3.jpg"),
|
| 314 |
+
os.path.join("/home/user/app", "TEST_IMG_4.jpg")
|
| 315 |
+
]
|
| 316 |
+
|
| 317 |
+
# Filter to valid examples
|
| 318 |
+
example_list = [ex for ex in examples if os.path.exists(ex)]
|
| 319 |
+
|
| 320 |
+
if example_list:
|
| 321 |
+
gr.Examples(
|
| 322 |
+
examples=example_list,
|
| 323 |
+
inputs=input_image,
|
| 324 |
+
label="Example Images"
|
| 325 |
+
)
|
| 326 |
+
|
| 327 |
+
# Event handlers
|
| 328 |
+
def update_task_visibility(task):
|
| 329 |
+
if task == "Object Detection":
|
| 330 |
+
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
|
| 331 |
+
else:
|
| 332 |
+
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=True)
|
| 333 |
+
|
| 334 |
+
task_type.change(
|
| 335 |
+
fn=update_task_visibility,
|
| 336 |
+
inputs=task_type,
|
| 337 |
+
outputs=[detection_options, segmentation_results, detection_results, segmentation_results]
|
| 338 |
+
)
|
| 339 |
+
|
| 340 |
+
# Submit button click event
|
| 341 |
+
submit_btn.click(
|
| 342 |
+
fn=process_game,
|
| 343 |
+
inputs=[input_image, task_type, user_prediction, confidence],
|
| 344 |
+
outputs=[result_msg, model1_output, model2_output, detection_output, segmentation_output]
|
| 345 |
+
)
|
| 346 |
+
|
| 347 |
+
# Add markdown information about the models
|
| 348 |
+
gr.Markdown("""
|
| 349 |
+
## About the Models
|
| 350 |
+
|
| 351 |
+
### Detection Models:
|
| 352 |
+
- **Model 1** is Faster R-CNN with ResNet50 backbone, a two-stage detector that's accurate but relatively slower.
|
| 353 |
+
- **Model 2** is RetinaNet with ResNet50 backbone, a one-stage detector that's designed for better speed-accuracy trade-off.
|
| 354 |
+
|
| 355 |
+
### Instance Segmentation:
|
| 356 |
+
- The segmentation model is Mask R-CNN with ResNet50 backbone, which provides pixel-level masks in addition to bounding boxes.
|
| 357 |
+
|
| 358 |
+
### How is the winner determined?
|
| 359 |
+
The winner is determined based on a combined score of:
|
| 360 |
+
1. Number of objects detected
|
| 361 |
+
2. Average confidence score
|
| 362 |
+
3. Number of unique classes detected
|
| 363 |
+
|
| 364 |
+
Can you predict which model will perform better on your image?
|
| 365 |
+
""")
|
| 366 |
+
|
| 367 |
+
return app
|
| 368 |
|
| 369 |
+
# Launch the app
|
| 370 |
if __name__ == "__main__":
|
| 371 |
+
app = create_ui()
|
| 372 |
+
app.launch(debug=True)
|