diffusers_dare_merger / hf_merge.py
John6666's picture
Upload 9 files
3a9c7c3 verified
from tqdm import tqdm
import argparse
import requests
import merge
import os
import sys
import shutil
import yaml
from pathlib import Path
import gradio as gr
def parse_arguments():
parser = argparse.ArgumentParser(description="Merge HuggingFace models")
parser.add_argument('repo_list', type=str, help='File containing list of repositories to merge, supports mergekit yaml or txt')
parser.add_argument('output_dir', type=str, help='Directory for the merged models')
parser.add_argument('-base_model', type=str, default='staging/base_model', help='Base model directory')
parser.add_argument('-staging_model', type=str, default='staging/merge_model', help='Staging model directory')
parser.add_argument('-p', type=float, default=0.5, help='Dropout probability')
parser.add_argument('-lambda', dest='lambda_val', type=float, default=1.0, help='Scaling factor for the weight delta')
parser.add_argument('--dry', action='store_true', help='Run in dry mode without making any changes')
return parser.parse_args()
def repo_list_generator(file_path, default_p, default_lambda_val):
_, file_extension = os.path.splitext(file_path)
# Branching based on file extension
if file_extension.lower() == '.yaml' or file_extension.lower() == ".yml":
with open(file_path, 'r', encoding='utf-8') as file:
data = yaml.safe_load(file)
for model_info in data['models']:
model_name = model_info['model']
p = model_info.get('parameters', {}).get('weight', default_p)
lambda_val = 1 / model_info.get('parameters', {}).get('density', default_lambda_val)
yield model_name, p, lambda_val
else: # Defaulting to txt file processing
with open(file_path, "r", encoding='utf-8') as file:
repos_to_process = file.readlines()
for repo in repos_to_process:
yield repo.strip(), default_p, default_lambda_val
def reset_directories(directories, dry_run):
for directory in directories:
if os.path.exists(directory):
if dry_run:
print(f"[DRY RUN] Would delete directory {directory}")
else:
shutil.rmtree(directory)
print(f"Directory {directory} deleted successfully.")
def do_merge(tensor_map, staging_path, p, lambda_val, dry_run=False):
if dry_run:
print(f"[DRY RUN] Would merge with {staging_path}")
else:
try:
print(f"Merge operation for {staging_path}")
tensor_map = merge.merge_folder(tensor_map, staging_path, p, lambda_val)
print("Merge operation completed successfully.")
except Exception as e:
print(f"Error during merge operation: {e}")
return tensor_map
def do_merge_files(base_path, staging_path, output_path, p, lambda_val, dry_run=False):
if dry_run:
print(f"[DRY RUN] Would merge with {staging_path}")
else:
try:
print(f"Merge operation for {staging_path}")
tensor_map = merge.merge_files(base_path, staging_path, output_path, p, lambda_val)
print("Merge operation completed successfully.")
except Exception as e:
print(f"Error during merge operation: {e}")
return tensor_map
def do_merge_diffusers(tensor_map, staging_path, p, lambda_val, skip_dirs, dry_run=False):
if dry_run:
print(f"[DRY RUN] Would merge with {staging_path}")
else:
try:
print(f"Merge operation for {staging_path}")
tensor_map = merge.merge_folder_diffusers(tensor_map, staging_path, p, lambda_val, skip_dirs)
print("Merge operation completed successfully.")
except Exception as e:
print(f"Error during merge operation: {e}")
return tensor_map
def download_repo(repo_name, path, dry_run=False):
from huggingface_hub import snapshot_download
if dry_run:
print(f"[DRY RUN] Would download repository {repo_name} to {path}")
else:
print(f"Repository {repo_name} cloning.")
try:
snapshot_download(repo_id=repo_name, local_dir=path)
except Exception as e:
print(e)
return
print(f"Repository {repo_name} cloned successfully.")
def download_thing(directory, url, progress=gr.Progress(track_tqdm=True)):
civitai_api_key= os.environ.get("CIVITAI_API_KEY")
url = url.strip()
if "drive.google.com" in url:
original_dir = os.getcwd()
os.chdir(directory)
os.system(f"gdown --fuzzy {url}")
os.chdir(original_dir)
elif "huggingface.co" in url:
url = url.replace("?download=true", "")
if "/blob/" in url:
url = url.replace("/blob/", "/resolve/")
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 {url} -d {directory} -o {url.split('/')[-1]}")
else:
os.system (f"aria2c --optimize-concurrent-downloads --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 {url} -d {directory} -o {url.split('/')[-1]}")
elif "civitai.com" in url:
if "?" in url:
url = url.split("?")[0]
if civitai_api_key:
url = url + f"?token={civitai_api_key}"
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
else:
print("You need an API key to download Civitai models.")
else:
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
def get_local_model_list(dir_path):
model_list = []
valid_extensions = ('.safetensors')
for file in Path(dir_path).glob("*"):
if file.suffix in valid_extensions:
file_path = str(Path(f"{dir_path}/{file.name}"))
model_list.append(file_path)
return model_list
def list_sub(a, b):
return [e for e in a if e not in b]
def get_download_file(temp_dir, url):
new_file = None
if not "http" in url and Path(url).exists():
print(f"Use local file: {url}")
new_file = url
elif Path(f"{temp_dir}/{url.split('/')[-1]}").exists():
print(f"File to download alreday exists: {url}")
new_file = f"{temp_dir}/{url.split('/')[-1]}"
else:
print(f"Start downloading: {url}")
before = get_local_model_list(temp_dir)
try:
download_thing(temp_dir, url.strip())
except Exception:
print(f"Download failed: {url}")
return None
after = get_local_model_list(temp_dir)
new_file = list_sub(after, before)[0] if list_sub(after, before) else None
if new_file is None:
print(f"Download failed: {url}")
return None
print(f"Download completed: {url}")
return new_file
def download_file(url, path, dry_run=False):
if dry_run:
print(f"[DRY RUN] Would download file {url} to {path}")
else:
print(f"File {url} cloning.")
try:
path = get_download_file(path, url)
except Exception as e:
print(e)
return None
print(f"File {url} cloned successfully.")
return path
def is_repo_name(s):
import re
return re.fullmatch(r'^[^/,\s]+?/[^/,\s]+?$', s)
def should_create_symlink(repo_name):
if os.path.exists(repo_name):
return True, os.path.isfile(repo_name)
return False, False
def download_or_link_repo(repo_name, path, dry_run=False):
symlink, is_file = should_create_symlink(repo_name)
if symlink and is_file:
os.makedirs(path, exist_ok=True)
symlink_path = os.path.join(path, os.path.basename(repo_name))
os.symlink(repo_name, symlink_path)
elif symlink:
os.symlink(repo_name, path)
elif "http" in repo_name:
return download_file(repo_name, path, dry_run)
elif is_repo_name(repo_name):
download_repo(repo_name, path, dry_run)
return None
def delete_repo(path, dry_run=False):
if dry_run:
print(f"[DRY RUN] Would delete repository at {path}")
else:
try:
shutil.rmtree(path)
print(f"Repository at {path} deleted successfully.")
except Exception as e:
print(f"Error deleting repository at {path}: {e}")
def get_max_vocab_size(repo_list):
max_vocab_size = 0
repo_with_max_vocab = None
for repo in repo_list:
repo_name = repo[0].strip()
url = f"https://huggingface.co/{repo_name}/raw/main/config.json"
try:
response = requests.get(url)
response.raise_for_status()
config = response.json()
vocab_size = config.get("vocab_size", 0)
if vocab_size > max_vocab_size:
max_vocab_size = vocab_size
repo_with_max_vocab = repo_name
except requests.RequestException as e:
print(f"Error fetching data from {url}: {e}")
return max_vocab_size, repo_with_max_vocab
def download_json_files(repo_name, file_paths, output_dir):
base_url = f"https://huggingface.co/{repo_name}/raw/main/"
for file_path in file_paths:
url = base_url + file_path
response = requests.get(url)
if response.status_code == 200:
with open(os.path.join(output_dir, os.path.basename(file_path)), 'wb') as file:
file.write(response.content)
else:
print(f"Failed to download {file_path}")
def get_merged_path(filename, output_dir):
from datetime import datetime, timezone, timedelta
dt_now = datetime.now(timezone(timedelta(hours=9)))
basename = dt_now.strftime('Merged_%Y%m%d_%H%M')
ext = Path(filename).suffix
return str(Path(output_dir, basename + ext)), str(Path(output_dir, basename + ".yaml"))
def repo_list_to_yaml(repo_list_path, repo_list, output_yaml_path):
if Path(repo_list_path).suffix.lower() in (".yaml", ".yml"):
shutil.copy(repo_list_path, output_yaml_path)
else:
repos = list(repo_list)
yaml_dict = {}
yaml_dict.setdefault('models', {})
for repo in repos:
model, weight, density = repo
model_info = {}
model_info['model'] = str(model)
model_info.setdefault('parameters', {})
model_info['parameters']['weight'] = float(weight)
model_info['parameters']['density'] = float(density)
yaml_dict['models'][str(model.split("/")[-1])] = model_info
with open(output_yaml_path, mode='w', encoding='utf-8') as file:
yaml.dump(yaml_dict, file, default_flow_style=False, allow_unicode=True)
def process_repos(output_dir, base_model, staging_model, repo_list_file, p, lambda_val, skip_dirs, dry_run=False, progress=gr.Progress(track_tqdm=True)):
repo_type = "Default" # ("Default", "Files", "Diffusers")
# Check if output_dir exists
if os.path.exists(output_dir):
sys.exit(f"Output directory '{output_dir}' already exists. Exiting to prevent data loss.")
# Reset base and staging directories
reset_directories([base_model, staging_model], dry_run)
# Make sure staging and output directories exist
os.makedirs(base_model, exist_ok=True)
os.makedirs(staging_model, exist_ok=True)
repo_list_gen = repo_list_generator(repo_list_file, p, lambda_val)
repos_to_process = list(repo_list_gen)
# Initial download for 'base_model'
path = download_or_link_repo(repos_to_process[0][0].strip(), base_model, dry_run)
if path is not None and (".safetensors" in path or ".sft" in path): repo_type = "Files"
elif Path(base_model, "model_index.json").exists(): repo_type = "Diffusers"
if repo_type == "Files":
os.makedirs(output_dir, exist_ok=True)
output_file_path, output_yaml_path = get_merged_path(path, output_dir)
repo_list_to_yaml(repo_list_file, repo_list_gen, output_yaml_path)
for i, repo in enumerate(tqdm(repos_to_process[1:], desc='Merging Files')):
repo_name = repo[0].strip()
repo_p = repo[1]
repo_lambda = repo[2]
delete_repo(staging_model, dry_run)
staging_path = download_or_link_repo(repo_name, staging_model, dry_run)
do_merge_files(path, staging_path, output_file_path, repo_p, repo_lambda, dry_run)
reset_directories([base_model, staging_model], dry_run)
return output_file_path, output_yaml_path
elif repo_type == "Diffusers":
merge.copy_dirs(base_model, output_dir)
tensor_map = merge.map_tensors_to_files_diffusers(base_model, skip_dirs)
for i, repo in enumerate(tqdm(repos_to_process[1:], desc='Merging Repos')):
repo_name = repo[0].strip()
repo_p = repo[1]
repo_lambda = repo[2]
delete_repo(staging_model, dry_run)
download_or_link_repo(repo_name, staging_model, dry_run)
tensor_map = do_merge_diffusers(tensor_map, staging_model, repo_p, repo_lambda, skip_dirs, dry_run)
os.makedirs(output_dir, exist_ok=True)
merge.copy_skipped_dirs(base_model, output_dir, skip_dirs)
merge.copy_nontensor_files(base_model, output_dir)
merge.save_tensor_map(tensor_map, output_dir)
reset_directories([base_model, staging_model], dry_run)
return None, None
elif repo_type == "Default":
merge.copy_dirs(base_model, output_dir)
tensor_map = merge.map_tensors_to_files(base_model)
for i, repo in enumerate(tqdm(repos_to_process[1:], desc='Merging Repos')):
repo_name = repo[0].strip()
repo_p = repo[1]
repo_lambda = repo[2]
delete_repo(staging_model, dry_run)
download_or_link_repo(repo_name, staging_model, dry_run)
tensor_map = do_merge(tensor_map, staging_model, repo_p, repo_lambda, dry_run)
os.makedirs(output_dir, exist_ok=True)
merge.copy_nontensor_files(base_model, output_dir)
# Handle LLMs that add tokens by taking the largest
if os.path.exists(os.path.join(output_dir, 'config.json')):
max_vocab_size, repo_name = get_max_vocab_size(repos_to_process)
if max_vocab_size > 0:
file_paths = ['config.json', 'special_tokens_map.json', 'tokenizer.json', 'tokenizer_config.json']
download_json_files(repo_name, file_paths, output_dir)
reset_directories([base_model, staging_model], dry_run)
merge.save_tensor_map(tensor_map, output_dir)
return None, None
if __name__ == "__main__":
args = parse_arguments()
skip_dirs = ['vae', 'text_encoder']
process_repos(args.output_dir, args.base_model, args.staging_model, args.repo_list, args.p, args.lambda_val, skip_dirs, args.dry)