|
|
|
|
|
|
|
import numpy as np |
|
from numpy import ndarray |
|
from typing import Tuple |
|
|
|
WGS84_a = 6378137.0 |
|
WGS84_b = 6356752.314245 |
|
|
|
|
|
def ecef_from_lla(lat, lon, alt: float) -> Tuple[float, ...]: |
|
""" |
|
Compute ECEF XYZ from latitude, longitude and altitude. |
|
|
|
All using the WGS84 model. |
|
Altitude is the distance to the WGS84 ellipsoid. |
|
Check results here http://www.oc.nps.edu/oc2902w/coord/llhxyz.htm |
|
|
|
>>> lat, lon, alt = 10, 20, 30 |
|
>>> x, y, z = ecef_from_lla(lat, lon, alt) |
|
>>> np.allclose(lla_from_ecef(x,y,z), [lat, lon, alt]) |
|
True |
|
""" |
|
a2 = WGS84_a**2 |
|
b2 = WGS84_b**2 |
|
lat = np.radians(lat) |
|
lon = np.radians(lon) |
|
L = 1.0 / np.sqrt(a2 * np.cos(lat) ** 2 + b2 * np.sin(lat) ** 2) |
|
x = (a2 * L + alt) * np.cos(lat) * np.cos(lon) |
|
y = (a2 * L + alt) * np.cos(lat) * np.sin(lon) |
|
z = (b2 * L + alt) * np.sin(lat) |
|
return x, y, z |
|
|
|
|
|
def lla_from_ecef(x, y, z): |
|
""" |
|
Compute latitude, longitude and altitude from ECEF XYZ. |
|
|
|
All using the WGS84 model. |
|
Altitude is the distance to the WGS84 ellipsoid. |
|
""" |
|
a = WGS84_a |
|
b = WGS84_b |
|
ea = np.sqrt((a**2 - b**2) / a**2) |
|
eb = np.sqrt((a**2 - b**2) / b**2) |
|
p = np.sqrt(x**2 + y**2) |
|
theta = np.arctan2(z * a, p * b) |
|
lon = np.arctan2(y, x) |
|
lat = np.arctan2( |
|
z + eb**2 * b * np.sin(theta) ** 3, p - ea**2 * a * np.cos(theta) ** 3 |
|
) |
|
N = a / np.sqrt(1 - ea**2 * np.sin(lat) ** 2) |
|
alt = p / np.cos(lat) - N |
|
return np.degrees(lat), np.degrees(lon), alt |
|
|
|
|
|
def ecef_from_topocentric_transform(lat, lon, alt: float) -> ndarray: |
|
""" |
|
Transformation from a topocentric frame at reference position to ECEF. |
|
|
|
The topocentric reference frame is a metric one with the origin |
|
at the given (lat, lon, alt) position, with the X axis heading east, |
|
the Y axis heading north and the Z axis vertical to the ellipsoid. |
|
>>> a = ecef_from_topocentric_transform(30, 20, 10) |
|
>>> b = ecef_from_topocentric_transform_finite_diff(30, 20, 10) |
|
>>> np.allclose(a, b) |
|
True |
|
""" |
|
x, y, z = ecef_from_lla(lat, lon, alt) |
|
sa = np.sin(np.radians(lat)) |
|
ca = np.cos(np.radians(lat)) |
|
so = np.sin(np.radians(lon)) |
|
co = np.cos(np.radians(lon)) |
|
return np.array( |
|
[ |
|
[-so, -sa * co, ca * co, x], |
|
[co, -sa * so, ca * so, y], |
|
[0, ca, sa, z], |
|
[0, 0, 0, 1], |
|
] |
|
) |
|
|
|
|
|
def ecef_from_topocentric_transform_finite_diff(lat, lon, alt: float) -> ndarray: |
|
""" |
|
Transformation from a topocentric frame at reference position to ECEF. |
|
|
|
The topocentric reference frame is a metric one with the origin |
|
at the given (lat, lon, alt) position, with the X axis heading east, |
|
the Y axis heading north and the Z axis vertical to the ellipsoid. |
|
""" |
|
eps = 1e-2 |
|
x, y, z = ecef_from_lla(lat, lon, alt) |
|
v1 = ( |
|
( |
|
np.array(ecef_from_lla(lat, lon + eps, alt)) |
|
- np.array(ecef_from_lla(lat, lon - eps, alt)) |
|
) |
|
/ 2 |
|
/ eps |
|
) |
|
v2 = ( |
|
( |
|
np.array(ecef_from_lla(lat + eps, lon, alt)) |
|
- np.array(ecef_from_lla(lat - eps, lon, alt)) |
|
) |
|
/ 2 |
|
/ eps |
|
) |
|
v3 = ( |
|
( |
|
np.array(ecef_from_lla(lat, lon, alt + eps)) |
|
- np.array(ecef_from_lla(lat, lon, alt - eps)) |
|
) |
|
/ 2 |
|
/ eps |
|
) |
|
v1 /= np.linalg.norm(v1) |
|
v2 /= np.linalg.norm(v2) |
|
v3 /= np.linalg.norm(v3) |
|
return np.array( |
|
[ |
|
[v1[0], v2[0], v3[0], x], |
|
[v1[1], v2[1], v3[1], y], |
|
[v1[2], v2[2], v3[2], z], |
|
[0, 0, 0, 1], |
|
] |
|
) |
|
|
|
|
|
def topocentric_from_lla(lat, lon, alt: float, reflat, reflon, refalt: float): |
|
""" |
|
Transform from lat, lon, alt to topocentric XYZ. |
|
|
|
>>> lat, lon, alt = -10, 20, 100 |
|
>>> np.allclose(topocentric_from_lla(lat, lon, alt, lat, lon, alt), |
|
... [0,0,0]) |
|
True |
|
>>> x, y, z = topocentric_from_lla(lat, lon, alt, 0, 0, 0) |
|
>>> np.allclose(lla_from_topocentric(x, y, z, 0, 0, 0), |
|
... [lat, lon, alt]) |
|
True |
|
""" |
|
T = np.linalg.inv(ecef_from_topocentric_transform(reflat, reflon, refalt)) |
|
x, y, z = ecef_from_lla(lat, lon, alt) |
|
tx = T[0, 0] * x + T[0, 1] * y + T[0, 2] * z + T[0, 3] |
|
ty = T[1, 0] * x + T[1, 1] * y + T[1, 2] * z + T[1, 3] |
|
tz = T[2, 0] * x + T[2, 1] * y + T[2, 2] * z + T[2, 3] |
|
return tx, ty, tz |
|
|
|
|
|
def lla_from_topocentric(x, y, z, reflat, reflon, refalt: float): |
|
""" |
|
Transform from topocentric XYZ to lat, lon, alt. |
|
""" |
|
T = ecef_from_topocentric_transform(reflat, reflon, refalt) |
|
ex = T[0, 0] * x + T[0, 1] * y + T[0, 2] * z + T[0, 3] |
|
ey = T[1, 0] * x + T[1, 1] * y + T[1, 2] * z + T[1, 3] |
|
ez = T[2, 0] * x + T[2, 1] * y + T[2, 2] * z + T[2, 3] |
|
return lla_from_ecef(ex, ey, ez) |
|
|
|
|
|
class TopocentricConverter(object): |
|
"""Convert to and from a topocentric reference frame.""" |
|
|
|
def __init__(self, reflat, reflon, refalt): |
|
"""Init the converter given the reference origin.""" |
|
self.lat = reflat |
|
self.lon = reflon |
|
self.alt = refalt |
|
|
|
def to_topocentric(self, lat, lon, alt): |
|
"""Convert lat, lon, alt to topocentric x, y, z.""" |
|
return topocentric_from_lla(lat, lon, alt, self.lat, self.lon, self.alt) |
|
|
|
def to_lla(self, x, y, z): |
|
"""Convert topocentric x, y, z to lat, lon, alt.""" |
|
return lla_from_topocentric(x, y, z, self.lat, self.lon, self.alt) |
|
|
|
def __eq__(self, o): |
|
return np.allclose([self.lat, self.lon, self.alt], (o.lat, o.lon, o.alt)) |