|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Convenience classes for an SE3 pose and a pinhole Camera with lens distortion. |
|
Based on PyTorch tensors: differentiable, batched, with GPU support. |
|
""" |
|
|
|
import functools |
|
import inspect |
|
import math |
|
from typing import Dict, List, NamedTuple, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from .geometry import undistort_points |
|
|
|
|
|
def autocast(func): |
|
"""Cast the inputs of a TensorWrapper method to PyTorch tensors |
|
if they are numpy arrays. Use the device and dtype of the wrapper. |
|
""" |
|
|
|
@functools.wraps(func) |
|
def wrap(self, *args): |
|
device = torch.device("cpu") |
|
dtype = None |
|
if isinstance(self, TensorWrapper): |
|
if self._data is not None: |
|
device = self.device |
|
dtype = self.dtype |
|
elif not inspect.isclass(self) or not issubclass(self, TensorWrapper): |
|
raise ValueError(self) |
|
|
|
cast_args = [] |
|
for arg in args: |
|
if isinstance(arg, np.ndarray): |
|
arg = torch.from_numpy(arg) |
|
arg = arg.to(device=device, dtype=dtype) |
|
cast_args.append(arg) |
|
return func(self, *cast_args) |
|
|
|
return wrap |
|
|
|
|
|
class TensorWrapper: |
|
_data = None |
|
|
|
@autocast |
|
def __init__(self, data: torch.Tensor): |
|
self._data = data |
|
|
|
@property |
|
def shape(self): |
|
return self._data.shape[:-1] |
|
|
|
@property |
|
def device(self): |
|
return self._data.device |
|
|
|
@property |
|
def dtype(self): |
|
return self._data.dtype |
|
|
|
def __getitem__(self, index): |
|
return self.__class__(self._data[index]) |
|
|
|
def __setitem__(self, index, item): |
|
self._data[index] = item.data |
|
|
|
def to(self, *args, **kwargs): |
|
return self.__class__(self._data.to(*args, **kwargs)) |
|
|
|
def cpu(self): |
|
return self.__class__(self._data.cpu()) |
|
|
|
def cuda(self): |
|
return self.__class__(self._data.cuda()) |
|
|
|
def pin_memory(self): |
|
return self.__class__(self._data.pin_memory()) |
|
|
|
def float(self): |
|
return self.__class__(self._data.float()) |
|
|
|
def double(self): |
|
return self.__class__(self._data.double()) |
|
|
|
def detach(self): |
|
return self.__class__(self._data.detach()) |
|
|
|
@classmethod |
|
def stack(cls, objects: List, dim=0, *, out=None): |
|
data = torch.stack([obj._data for obj in objects], dim=dim, out=out) |
|
return cls(data) |
|
|
|
@classmethod |
|
def __torch_function__(cls, func, types, args=(), kwargs=None): |
|
if kwargs is None: |
|
kwargs = {} |
|
if func is torch.stack: |
|
return cls.stack(*args, **kwargs) |
|
else: |
|
return NotImplemented |
|
|
|
|
|
class Pose(TensorWrapper): |
|
def __init__(self, data: torch.Tensor): |
|
assert data.shape[-1] == 12 |
|
super().__init__(data) |
|
|
|
@classmethod |
|
@autocast |
|
def from_Rt(cls, R: torch.Tensor, t: torch.Tensor): |
|
"""Pose from a rotation matrix and translation vector. |
|
Accepts numpy arrays or PyTorch tensors. |
|
|
|
Args: |
|
R: rotation matrix with shape (..., 3, 3). |
|
t: translation vector with shape (..., 3). |
|
""" |
|
assert R.shape[-2:] == (3, 3) |
|
assert t.shape[-1] == 3 |
|
assert R.shape[:-2] == t.shape[:-1] |
|
data = torch.cat([R.flatten(start_dim=-2), t], -1) |
|
return cls(data) |
|
|
|
@classmethod |
|
def from_4x4mat(cls, T: torch.Tensor): |
|
"""Pose from an SE(3) transformation matrix. |
|
Args: |
|
T: transformation matrix with shape (..., 4, 4). |
|
""" |
|
assert T.shape[-2:] == (4, 4) |
|
R, t = T[..., :3, :3], T[..., :3, 3] |
|
return cls.from_Rt(R, t) |
|
|
|
@classmethod |
|
def from_colmap(cls, image: NamedTuple): |
|
"""Pose from a COLMAP Image.""" |
|
return cls.from_Rt(image.qvec2rotmat(), image.tvec) |
|
|
|
@property |
|
def R(self) -> torch.Tensor: |
|
"""Underlying rotation matrix with shape (..., 3, 3).""" |
|
rvec = self._data[..., :9] |
|
return rvec.reshape(rvec.shape[:-1] + (3, 3)) |
|
|
|
@property |
|
def t(self) -> torch.Tensor: |
|
"""Underlying translation vector with shape (..., 3).""" |
|
return self._data[..., -3:] |
|
|
|
def inv(self) -> "Pose": |
|
"""Invert an SE(3) pose.""" |
|
R = self.R.transpose(-1, -2) |
|
t = -(R @ self.t.unsqueeze(-1)).squeeze(-1) |
|
return self.__class__.from_Rt(R, t) |
|
|
|
def compose(self, other: "Pose") -> "Pose": |
|
"""Chain two SE(3) poses: T_B2C.compose(T_A2B) -> T_A2C.""" |
|
R = self.R @ other.R |
|
t = self.t + (self.R @ other.t.unsqueeze(-1)).squeeze(-1) |
|
return self.__class__.from_Rt(R, t) |
|
|
|
@autocast |
|
def transform(self, p3d: torch.Tensor) -> torch.Tensor: |
|
"""Transform a set of 3D points. |
|
Args: |
|
p3d: 3D points, numpy array or PyTorch tensor with shape (..., 3). |
|
""" |
|
assert p3d.shape[-1] == 3 |
|
|
|
return p3d @ self.R.transpose(-1, -2) + self.t.unsqueeze(-2) |
|
|
|
def __matmul__( |
|
self, other: Union["Pose", torch.Tensor] |
|
) -> Union["Pose", torch.Tensor]: |
|
"""Transform a set of 3D points: T_A2B * p3D_A -> p3D_B. |
|
or chain two SE(3) poses: T_B2C @ T_A2B -> T_A2C.""" |
|
if isinstance(other, self.__class__): |
|
return self.compose(other) |
|
else: |
|
return self.transform(other) |
|
|
|
def numpy(self) -> Tuple[np.ndarray]: |
|
return self.R.numpy(), self.t.numpy() |
|
|
|
def magnitude(self) -> Tuple[torch.Tensor]: |
|
"""Magnitude of the SE(3) transformation. |
|
Returns: |
|
dr: rotation anngle in degrees. |
|
dt: translation distance in meters. |
|
""" |
|
trace = torch.diagonal(self.R, dim1=-1, dim2=-2).sum(-1) |
|
cos = torch.clamp((trace - 1) / 2, -1, 1) |
|
dr = torch.acos(cos).abs() / math.pi * 180 |
|
dt = torch.norm(self.t, dim=-1) |
|
return dr, dt |
|
|
|
def __repr__(self): |
|
return f"Pose: {self.shape} {self.dtype} {self.device}" |
|
|
|
|
|
class Camera(TensorWrapper): |
|
eps = 1e-4 |
|
|
|
def __init__(self, data: torch.Tensor): |
|
assert data.shape[-1] in {6, 8, 10} |
|
super().__init__(data) |
|
|
|
@classmethod |
|
def from_dict(cls, camera: Union[Dict, NamedTuple]): |
|
"""Camera from a COLMAP Camera tuple or dictionary. |
|
We assume that the origin (0, 0) is the center of the top-left pixel. |
|
This is different from COLMAP. |
|
""" |
|
if isinstance(camera, tuple): |
|
camera = camera._asdict() |
|
|
|
model = camera["model"] |
|
params = camera["params"] |
|
|
|
if model in ["OPENCV", "PINHOLE"]: |
|
(fx, fy, cx, cy), params = np.split(params, [4]) |
|
elif model in ["SIMPLE_PINHOLE", "SIMPLE_RADIAL", "RADIAL"]: |
|
(f, cx, cy), params = np.split(params, [3]) |
|
fx = fy = f |
|
if model == "SIMPLE_RADIAL": |
|
params = np.r_[params, 0.0] |
|
else: |
|
raise NotImplementedError(model) |
|
|
|
data = np.r_[ |
|
camera["width"], camera["height"], fx, fy, cx - 0.5, cy - 0.5, params |
|
] |
|
return cls(data) |
|
|
|
@property |
|
def size(self) -> torch.Tensor: |
|
"""Size (width height) of the images, with shape (..., 2).""" |
|
return self._data[..., :2] |
|
|
|
@property |
|
def f(self) -> torch.Tensor: |
|
"""Focal lengths (fx, fy) with shape (..., 2).""" |
|
return self._data[..., 2:4] |
|
|
|
@property |
|
def c(self) -> torch.Tensor: |
|
"""Principal points (cx, cy) with shape (..., 2).""" |
|
return self._data[..., 4:6] |
|
|
|
@property |
|
def dist(self) -> torch.Tensor: |
|
"""Distortion parameters, with shape (..., {0, 2, 4}).""" |
|
return self._data[..., 6:] |
|
|
|
def scale(self, scales: Union[float, int, Tuple[Union[float, int]]]): |
|
"""Update the camera parameters after resizing an image.""" |
|
if isinstance(scales, (int, float)): |
|
scales = (scales, scales) |
|
s = self._data.new_tensor(scales) |
|
data = torch.cat( |
|
[self.size * s, self.f * s, (self.c + 0.5) * s - 0.5, self.dist], -1 |
|
) |
|
return self.__class__(data) |
|
|
|
def crop(self, left_top: Tuple[float], size: Tuple[int]): |
|
"""Update the camera parameters after cropping an image.""" |
|
left_top = self._data.new_tensor(left_top) |
|
size = self._data.new_tensor(size) |
|
data = torch.cat([size, self.f, self.c - left_top, self.dist], -1) |
|
return self.__class__(data) |
|
|
|
def flip(self): |
|
"""Update the camera parameters after flipping an image.""" |
|
data = self._data.clone() |
|
data[..., 4] = self.size[..., 0] - self.c[..., 0] - 1 |
|
return self.__class__(data) |
|
|
|
@autocast |
|
def in_image(self, p2d: torch.Tensor): |
|
"""Check if 2D points are within the image boundaries.""" |
|
assert p2d.shape[-1] == 2 |
|
|
|
size = self.size.unsqueeze(-2) |
|
valid = torch.all((p2d >= 0) & (p2d <= (size - 1)), -1) |
|
return valid |
|
|
|
@autocast |
|
def project(self, p3d: torch.Tensor) -> Tuple[torch.Tensor]: |
|
"""Project 3D points into the camera plane and check for visibility.""" |
|
z = p3d[..., -1] |
|
valid = z > self.eps |
|
z = z.clamp(min=self.eps) |
|
p2d = p3d[..., :-1] / z.unsqueeze(-1) |
|
return p2d, valid |
|
|
|
def J_project(self, p3d: torch.Tensor): |
|
x, y, z = p3d[..., 0], p3d[..., 1], p3d[..., 2] |
|
zero = torch.zeros_like(z) |
|
J = torch.stack([1 / z, zero, -x / z**2, zero, 1 / z, -y / z**2], dim=-1) |
|
J = J.reshape(p3d.shape[:-1] + (2, 3)) |
|
return J |
|
|
|
@autocast |
|
def undistort(self, pts: torch.Tensor) -> Tuple[torch.Tensor]: |
|
"""Undistort normalized 2D coordinates |
|
and check for validity of the distortion model. |
|
""" |
|
assert pts.shape[-1] == 2 |
|
|
|
return undistort_points(pts, self.dist) |
|
|
|
@autocast |
|
def denormalize(self, p2d: torch.Tensor) -> torch.Tensor: |
|
"""Convert normalized 2D coordinates into pixel coordinates.""" |
|
return p2d * self.f.unsqueeze(-2) + self.c.unsqueeze(-2) |
|
|
|
@autocast |
|
def normalize(self, p2d: torch.Tensor) -> torch.Tensor: |
|
"""Convert pixel coordinates into normalized 2D coordinates.""" |
|
return (p2d - self.c.unsqueeze(-2)) / self.f.unsqueeze(-2) |
|
|
|
def J_denormalize(self): |
|
return torch.diag_embed(self.f).unsqueeze(-3) |
|
|
|
@autocast |
|
def world2image(self, p3d: torch.Tensor) -> Tuple[torch.Tensor]: |
|
"""Transform 3D points into 2D pixel coordinates.""" |
|
p2d, visible = self.project(p3d) |
|
p2d, mask = self.undistort(p2d) |
|
p2d = self.denormalize(p2d) |
|
valid = visible & mask & self.in_image(p2d) |
|
return p2d, valid |
|
|
|
def J_world2image(self, p3d: torch.Tensor): |
|
p2d_dist, valid = self.project(p3d) |
|
J = self.J_denormalize() @ self.J_undistort(p2d_dist) @ self.J_project(p3d) |
|
return J, valid |
|
|
|
def __repr__(self): |
|
return f"Camera {self.shape} {self.dtype} {self.device}" |
|
|