Cherie Ho
Initial upload
fd01725
raw
history blame
5.22 kB
from typing import Optional, Dict
import torch.nn as nn
import torch
from .schema import LossConfiguration
def dice_loss(input: torch.Tensor,
target: torch.Tensor,
loss_mask: torch.Tensor,
class_weights: Optional[torch.Tensor | bool],
smooth=1e-5):
'''
:param input: (B, H, W, C) Logits for each class
:param target: (B, H, W, C) Ground truth class labels in one_hot
:param loss_mask: (B, H, W) Mask indicating valid regions of the image
:param class_weights: (C) Weights for each class
:param smooth: Smoothing factor to avoid division by zero, default 1.0
'''
if isinstance(class_weights, torch.Tensor):
class_weights = class_weights.unsqueeze(0)
elif class_weights is None or class_weights == False:
class_weights = torch.ones(
1, target.size(-1), dtype=target.dtype, device=target.device)
elif class_weights == True:
class_weights = target.sum(1)
class_weights = torch.reciprocal(target.mean(1) + 1e-3)
class_weights = class_weights.clamp(min=1e-5)
# Only consider classes that are present
class_weights *= (target.sum(1) != 0).float()
class_weights.requires_grad = False
intersect = (2 * input * target)
intersect = (intersect) + smooth
union = (input + target)
union = (union) + smooth
loss = 1 - (intersect / union) # B, H, W, C
loss *= class_weights.unsqueeze(0).unsqueeze(0)
loss = loss.sum(-1) / class_weights.sum()
loss *= loss_mask
loss = loss.sum() / loss_mask.sum() # 1
return loss
class EnhancedLoss(nn.Module):
def __init__(
self,
cfg: LossConfiguration,
): # following params in the paper
super(EnhancedLoss, self).__init__()
self.num_classes = cfg.num_classes
self.xent_weight = cfg.xent_weight
self.focal = cfg.focal_loss
self.focal_gamma = cfg.focal_loss_gamma
self.dice_weight = cfg.dice_weight
# self.class_mapping =
if self.xent_weight == 0. and self.dice_weight == 0.:
raise ValueError(
"At least one of xent_weight and dice_weight must be greater than 0.")
if self.xent_weight > 0.:
self.xent_loss = nn.BCEWithLogitsLoss(
reduction="none"
)
if self.dice_weight > 0.:
self.dice_loss = dice_loss
if cfg.class_weights is not None and cfg.class_weights != True:
self.register_buffer("class_weights", torch.tensor(
cfg.class_weights), persistent=False)
else:
self.class_weights = cfg.class_weights
self.class_weights: Optional[torch.Tensor | bool]
self.requires_frustrum = cfg.requires_frustrum
self.requires_flood_mask = cfg.requires_flood_mask
self.label_smoothing = cfg.label_smoothing
def forward(self, pred: Dict[str, torch.Tensor], data: Dict[str, torch.Tensor]):
'''
Args:
pred: Dict containing the
- output: (B, C, H, W) Probabilities for each class
- valid_bev: (B, H, W) Mask indicating valid regions of the image
- conf: (B, H, W) Confidence map
data: Dict containing the
- seg_masks: (B, H, W, C) Ground truth class labels, one-hot encoded
- confidence_map: (B, H, W) Confidence map
'''
loss = {}
probs = pred['output'].permute(0, 2, 3, 1) # (B, H, W, C)
logits = pred['logits'].permute(0, 2, 3, 1) # (B, H, W, C)
labels: torch.Tensor = data['seg_masks'] # (B, H, W, C)
loss_mask = torch.ones(
labels.shape[:3], device=labels.device, dtype=labels.dtype)
if self.requires_frustrum:
frustrum_mask = pred["valid_bev"][..., :-1] != 0
loss_mask = loss_mask * frustrum_mask.float()
if self.requires_flood_mask:
flood_mask = data["flood_masks"] == 0
loss_mask = loss_mask * flood_mask.float()
if self.xent_weight > 0.:
if self.label_smoothing > 0.:
labels_ls = labels.float().clone()
labels_ls = labels_ls * \
(1 - self.label_smoothing) + \
self.label_smoothing / self.num_classes
xent_loss = self.xent_loss(logits, labels_ls)
else:
xent_loss = self.xent_loss(logits, labels)
if self.focal:
pt = torch.exp(-xent_loss)
xent_loss = (1 - pt) ** self.focal_gamma * xent_loss
xent_loss *= loss_mask.unsqueeze(-1)
xent_loss = xent_loss.sum() / (loss_mask.sum() + 1e-5)
loss['cross_entropy'] = xent_loss
loss['total'] = xent_loss * self.xent_weight
if self.dice_weight > 0.:
dloss = self.dice_loss(
probs, labels, loss_mask, self.class_weights)
loss['dice'] = dloss
if 'total' in loss:
loss['total'] += dloss * self.dice_weight
else:
loss['total'] = dloss * self.dice_weight
return loss