|
import torch |
|
import torchmetrics |
|
import torchmetrics.classification |
|
|
|
|
|
class PixelAccuracy(torchmetrics.Metric): |
|
def __init__(self): |
|
super().__init__() |
|
self.add_state("correct_pixels", default=torch.tensor( |
|
0), dist_reduce_fx="sum") |
|
self.add_state("total_pixels", default=torch.tensor(0), |
|
dist_reduce_fx="sum") |
|
|
|
def update(self, pred, data): |
|
output_mask = pred['output'] > 0.5 |
|
gt_mask = data["seg_masks"].permute(0, 3, 1, 2) |
|
self.correct_pixels += ( |
|
(output_mask == gt_mask).sum() |
|
) |
|
self.total_pixels += torch.numel(pred["valid_bev"][..., :-1]) |
|
|
|
def compute(self): |
|
return self.correct_pixels / self.total_pixels |
|
|
|
|
|
class IOU(torchmetrics.Metric): |
|
def __init__(self, num_classes=3, **kwargs): |
|
super().__init__(**kwargs) |
|
self.num_classes = num_classes |
|
self.add_state("intersection_observable", default=torch.zeros( |
|
num_classes), dist_reduce_fx="sum") |
|
self.add_state("union_observable", default=torch.zeros( |
|
num_classes), dist_reduce_fx="sum") |
|
self.add_state("intersection_non_observable", |
|
default=torch.zeros(num_classes), dist_reduce_fx="sum") |
|
self.add_state("union_non_observable", default=torch.zeros( |
|
num_classes), dist_reduce_fx="sum") |
|
|
|
def update(self, output, data): |
|
|
|
gt = data["seg_masks"] |
|
pred = output['output'] |
|
|
|
if "confidence_map" in data: |
|
observable_mask = torch.logical_and( |
|
output["valid_bev"][..., :-1], data["confidence_map"] == 0) |
|
non_observable_mask = torch.logical_and( |
|
output["valid_bev"][..., :-1], data["confidence_map"] == 1) |
|
else: |
|
observable_mask = output["valid_bev"][..., :-1] |
|
non_observable_mask = torch.logical_not(observable_mask) |
|
|
|
for class_idx in range(self.num_classes): |
|
pred_mask = pred[:, class_idx] > 0.5 |
|
gt_mask = gt[..., class_idx] |
|
|
|
|
|
intersection_observable = torch.logical_and( |
|
torch.logical_and(pred_mask, gt_mask), observable_mask |
|
).sum() |
|
union_observable = torch.logical_and( |
|
torch.logical_or(pred_mask, gt_mask), observable_mask |
|
).sum() |
|
self.intersection_observable[class_idx] += intersection_observable |
|
self.union_observable[class_idx] += union_observable |
|
|
|
|
|
intersection_non_observable = torch.logical_and( |
|
torch.logical_and(pred_mask, gt_mask), non_observable_mask |
|
).sum() |
|
union_non_observable = torch.logical_and( |
|
torch.logical_or(pred_mask, gt_mask), non_observable_mask |
|
).sum() |
|
|
|
self.intersection_non_observable[class_idx] += intersection_non_observable |
|
self.union_non_observable[class_idx] += union_non_observable |
|
|
|
def compute(self): |
|
raise NotImplemented |
|
|
|
|
|
class ObservableIOU(IOU): |
|
def __init__(self, class_idx=0, **kwargs): |
|
super().__init__(**kwargs) |
|
self.class_idx = class_idx |
|
|
|
def compute(self): |
|
return (self.intersection_observable / (self.union_observable + 1e-6))[self.class_idx] |
|
|
|
|
|
class UnobservableIOU(IOU): |
|
def __init__(self, class_idx=0, **kwargs): |
|
super().__init__(**kwargs) |
|
self.class_idx = class_idx |
|
|
|
def compute(self): |
|
return (self.intersection_non_observable / (self.union_non_observable + 1e-6))[self.class_idx] |
|
|
|
|
|
class MeanObservableIOU(IOU): |
|
def compute(self): |
|
return self.intersection_observable.sum() / (self.union_observable.sum() + 1e-6) |
|
|
|
|
|
class MeanUnobservableIOU(IOU): |
|
def compute(self): |
|
return self.intersection_non_observable.sum() / (self.union_non_observable.sum() + 1e-6) |
|
|
|
|
|
class mAP(torchmetrics.classification.MultilabelPrecision): |
|
def __init__(self, num_labels, **kwargs): |
|
super().__init__(num_labels=num_labels, **kwargs) |
|
|
|
def update(self, output, data): |
|
|
|
if "confidence_map" in data: |
|
observable_mask = torch.logical_and( |
|
output["valid_bev"][..., :-1], data["confidence_map"] == 0) |
|
else: |
|
observable_mask = output["valid_bev"][..., :-1] |
|
|
|
pred = output['output'] |
|
pred = pred.permute(0, 2, 3, 1) |
|
pred = pred[observable_mask] |
|
|
|
target = data['seg_masks'] |
|
target = target[observable_mask] |
|
|
|
super(mAP, self).update(pred, target) |
|
|