Cherie Ho
Initial upload
fd01725
raw
history blame
6.99 kB
import os
import numpy as np
from shapely import geometry, affinity
from pyquaternion import Quaternion
import cv2
from nuscenes.eval.detection.utils import category_to_detection_name
from nuscenes.eval.detection.constants import DETECTION_NAMES
from nuscenes.utils.data_classes import LidarPointCloud
from nuscenes.map_expansion.map_api import NuScenesMap
from shapely.strtree import STRtree
from collections import OrderedDict
import torch
def decode_binary_labels(labels, nclass):
bits = torch.pow(2, torch.arange(nclass))
return (labels & bits.view(-1, 1, 1)) > 0
def transform_polygon(polygon, affine):
"""
Transform a 2D polygon
"""
a, b, tx, c, d, ty = affine.flatten()[:6]
return affinity.affine_transform(polygon, [a, b, c, d, tx, ty])
def render_polygon(mask, polygon, extents, resolution, value=1):
if len(polygon) == 0:
return
polygon = (polygon - np.array(extents[:2])) / resolution
polygon = np.ascontiguousarray(polygon).round().astype(np.int32)
cv2.fillConvexPoly(mask, polygon, value)
def transform(matrix, vectors):
vectors = np.dot(matrix[:-1, :-1], vectors.T)
vectors = vectors.T + matrix[:-1, -1]
return vectors
CAMERA_NAMES = ['CAM_FRONT', 'CAM_FRONT_LEFT', 'CAM_FRONT_RIGHT',
'CAM_BACK_LEFT', 'CAM_BACK_RIGHT', 'CAM_BACK']
NUSCENES_CLASS_NAMES = [
'drivable_area', 'ped_crossing', 'walkway', 'carpark', 'car', 'truck',
'bus', 'trailer', 'construction_vehicle', 'pedestrian', 'motorcycle',
'bicycle', 'traffic_cone', 'barrier'
]
STATIC_CLASSES = ['drivable_area', 'ped_crossing', 'walkway', 'carpark_area']
LOCATIONS = ['boston-seaport', 'singapore-onenorth', 'singapore-queenstown',
'singapore-hollandvillage']
def load_map_data(dataroot, location):
# Load the NuScenes map object
nusc_map = NuScenesMap(dataroot, location)
map_data = OrderedDict()
for layer in STATIC_CLASSES:
# Retrieve all data associated with the current layer
records = getattr(nusc_map, layer)
polygons = list()
# Drivable area records can contain multiple polygons
if layer == 'drivable_area':
for record in records:
# Convert each entry in the record into a shapely object
for token in record['polygon_tokens']:
poly = nusc_map.extract_polygon(token)
if poly.is_valid:
polygons.append(poly)
else:
for record in records:
# Convert each entry in the record into a shapely object
poly = nusc_map.extract_polygon(record['polygon_token'])
if poly.is_valid:
polygons.append(poly)
# Store as an R-Tree for fast intersection queries
map_data[layer] = STRtree(polygons)
return map_data
def iterate_samples(nuscenes, start_token):
sample_token = start_token
while sample_token != '':
sample = nuscenes.get('sample', sample_token)
yield sample
sample_token = sample['next']
def get_map_masks(nuscenes, map_data, sample_data, extents, resolution):
# Render each layer sequentially
layers = [get_layer_mask(nuscenes, polys, sample_data, extents,
resolution) for layer, polys in map_data.items()]
return np.stack(layers, axis=0)
def get_layer_mask(nuscenes, polygons, sample_data, extents, resolution):
# Get the 2D affine transform from bev coords to map coords
tfm = get_sensor_transform(nuscenes, sample_data)[[0, 1, 3]][:, [0, 2, 3]]
inv_tfm = np.linalg.inv(tfm)
# Create a patch representing the birds-eye-view region in map coordinates
map_patch = geometry.box(*extents)
map_patch = transform_polygon(map_patch, tfm)
# Initialise the map mask
x1, z1, x2, z2 = extents
mask = np.zeros((int((z2 - z1) / resolution), int((x2 - x1) / resolution)),
dtype=np.uint8)
# Find all polygons which intersect with the area of interest
for polygon in polygons.query(map_patch):
polygon = polygon.intersection(map_patch)
# Transform into map coordinates
polygon = transform_polygon(polygon, inv_tfm)
# Render the polygon to the mask
render_shapely_polygon(mask, polygon, extents, resolution)
return mask
def get_object_masks(nuscenes, sample_data, extents, resolution):
# Initialize object masks
nclass = len(DETECTION_NAMES) + 1
grid_width = int((extents[2] - extents[0]) / resolution)
grid_height = int((extents[3] - extents[1]) / resolution)
masks = np.zeros((nclass, grid_height, grid_width), dtype=np.uint8)
# Get the 2D affine transform from bev coords to map coords
tfm = get_sensor_transform(nuscenes, sample_data)[[0, 1, 3]][:, [0, 2, 3]]
inv_tfm = np.linalg.inv(tfm)
for box in nuscenes.get_boxes(sample_data['token']):
# Get the index of the class
det_name = category_to_detection_name(box.name)
if det_name not in DETECTION_NAMES:
class_id = -1
else:
class_id = DETECTION_NAMES.index(det_name)
# Get bounding box coordinates in the grid coordinate frame
bbox = box.bottom_corners()[:2]
local_bbox = np.dot(inv_tfm[:2, :2], bbox).T + inv_tfm[:2, 2]
# Render the rotated bounding box to the mask
render_polygon(masks[class_id], local_bbox, extents, resolution)
return masks.astype(np.bool)
def get_sensor_transform(nuscenes, sample_data):
# Load sensor transform data
sensor = nuscenes.get(
'calibrated_sensor', sample_data['calibrated_sensor_token'])
sensor_tfm = make_transform_matrix(sensor)
# Load ego pose data
pose = nuscenes.get('ego_pose', sample_data['ego_pose_token'])
pose_tfm = make_transform_matrix(pose)
return np.dot(pose_tfm, sensor_tfm)
def load_point_cloud(nuscenes, sample_data):
# Load point cloud
lidar_path = os.path.join(nuscenes.dataroot, sample_data['filename'])
pcl = LidarPointCloud.from_file(lidar_path)
return pcl.points[:3, :].T
def make_transform_matrix(record):
"""
Create a 4x4 transform matrix from a calibrated_sensor or ego_pose record
"""
transform = np.eye(4)
transform[:3, :3] = Quaternion(record['rotation']).rotation_matrix
transform[:3, 3] = np.array(record['translation'])
return transform
def render_shapely_polygon(mask, polygon, extents, resolution):
if polygon.geom_type == 'Polygon':
# Render exteriors
render_polygon(mask, polygon.exterior.coords, extents, resolution, 1)
# Render interiors
for hole in polygon.interiors:
render_polygon(mask, hole.coords, extents, resolution, 0)
# Handle the case of compound shapes
else:
for poly in polygon:
render_shapely_polygon(mask, poly, extents, resolution)