Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
import numpy as np | |
import pickle | |
import json | |
# Load data yang sudah dibuat di model | |
with open('pipe.pkl', 'rb') as file1: | |
pipe = pickle.load(file1) | |
with open('random_best.pkl', 'rb') as file2: | |
km = pickle.load(file2) | |
def run(): | |
# Membuat form | |
with st.form(key='credit card default payment next month'): | |
id = st.number_input('Serial ID', 0, 1000000, 100, help='id dalam bentuk angka') | |
Flight = st.number_input('Flight', min_value=202, max_value=10000, value=2000, step=1, help='input nomor penerbangan') | |
Airline = st.selectbox('Maskapai', ('CO', 'US','AA', 'AS', 'DL', 'B6', 'HA', 'OO', '9E', 'OH', 'EV', 'XE', 'YV', 'UA', 'MQ', 'FL', 'F9', 'WN' ), help='maskaapinya keterangannya ada di google') | |
AirportFrom = st.selectbox('Airport From ', ('SFO', 'PHX', 'LAX', 'ANC', 'LAS', 'SLC', 'DEN', 'ONT'), help='nama bandara untuk keterangan lebih lanjut silahkan lihat di google') | |
AirportTo = st.selectbox('Airport To ', ('SFO', 'PHX', 'LAX', 'ANC', 'LAS', 'SLC', 'DEN', 'ONT'), help='nama bandara untuk keterangan lebih lanjut silahkan lihat di google') | |
DayOfWeek = st.selectbox('Hari ', (1, 2, 3, 4, 5, 6, 7), help='input daalam bentuk hari 1=senin , 2= selasa, 3= rabu, 4= kamis, 5= jumat, 6= Sabtu, 7= minggu') | |
Time = st.number_input('waktu', min_value=15, max_value=1000, value=999, step=1, help='input lama waktu penerbangan') | |
Length = st.number_input('jarak penerbangan', min_value=205, max_value=9999, value=2000, step=1, help='input jarak penerbangan') | |
submitted = st.form_submit_button('Predict') | |
st.write("---") | |
#buat dataframe yang telah dimasukkan | |
data_inf = { | |
'id': id, | |
'Airline': Flight, | |
'Flight': Airline, | |
'AirportFrom': AirportFrom, | |
'AirportTo': AirportTo, | |
'DayOfWeek': DayOfWeek, | |
'Time': Time, | |
'Length': Length, | |
} | |
data_inf = pd.DataFrame([data_inf]) | |
st.dataframe(data_inf) | |
if submitted: | |
# Predict probabilities for the test set | |
probabilities = pipe.predict_proba(data_inf) | |
max_prob_indexes = np.argmax(probabilities, axis=1) | |
max_probabilities = probabilities[np.arange(len(probabilities)), max_prob_indexes] | |
prediksi = pipe.predict(data_inf) | |
# Ganti nilai-nilai di dalam array | |
prediksi_asli = np.where(prediksi == 1, 'delay', 'tidak delay') | |
print(probabilities) | |
st.write(f'prediksi 0 sebesar {probabilities[:, 0]} dan prediksi 1 sebesar {probabilities[:,1]} jadi diprediksi sebagai {prediksi_asli}') | |
if __name__ == '__main__': | |
run() |