vineet124jig's picture
Update app.py
cda293e verified
import gradio as gr
import requests
import json
import os
import time
from collections import defaultdict
from PIL import Image
import io
BASE_URL = "https://api.jigsawstack.com/v1"
headers = {
"x-api-key": os.getenv("JIGSAWSTACK_API_KEY")
}
# Rate limiting configuration
request_times = defaultdict(list)
MAX_REQUESTS = 20 # Maximum requests per time window
TIME_WINDOW = 3600 # Time window in seconds (1 hour)
def get_real_ip(request: gr.Request):
"""Extract real IP address using x-forwarded-for header or fallback"""
if not request:
return "unknown"
forwarded = request.headers.get("x-forwarded-for")
if forwarded:
ip = forwarded.split(",")[0].strip() # First IP in the list is the client's
else:
ip = request.client.host # fallback
return ip
def check_rate_limit(request: gr.Request):
"""Check if the current request exceeds rate limits"""
if not request:
return True, "Rate limit check failed - no request info"
ip = get_real_ip(request)
now = time.time()
# Clean up old timestamps outside the time window
request_times[ip] = [t for t in request_times[ip] if now - t < TIME_WINDOW]
# Check if rate limit exceeded
if len(request_times[ip]) >= MAX_REQUESTS:
time_remaining = int(TIME_WINDOW - (now - request_times[ip][0]))
time_remaining_minutes = round(time_remaining / 60, 1)
time_window_minutes = round(TIME_WINDOW / 60, 1)
return False, f"Rate limit exceeded. You can make {MAX_REQUESTS} requests per {time_window_minutes} minutes. Try again in {time_remaining_minutes} minutes."
# Add current request timestamp
request_times[ip].append(now)
return True, ""
def detect_objects(request: gr.Request, image_url=None, file_store_key=None, prompts=None, features=None):
rate_limit_ok, rate_limit_msg = check_rate_limit(request)
if not rate_limit_ok:
return f"❌ {rate_limit_msg}", "", "", None
if not image_url and not file_store_key:
return "❌ Please provide either an image URL or file store key.", "", "", None
if image_url and file_store_key:
return "❌ Provide only one: image URL or file store key.", "", "", None
try:
payload = {}
if image_url:
payload["url"] = image_url
if file_store_key:
payload["file_store_key"] = file_store_key
# Add optional parameters
if prompts:
payload["prompts"] = prompts
if features:
payload["features"] = features
# Always return annotated image
payload["annotated_image"] = True
# Always use url as return_type
payload["return_type"] = "url"
response = requests.post(f"{BASE_URL}/ai/object_detection", headers=headers, json=payload)
if response.status_code != 200:
return f"❌ Error: {response.status_code} - {response.text}", "", "", None
result = response.json()
if not result.get("success"):
return "❌ Detection failed.", "", "", None
status = "βœ… Detection successful!"
objects = result.get("objects", [])
annotated_image_url = result.get("annotated_image")
# Create description with object details
description = f"Image Size: {result.get('width', 'Unknown')} x {result.get('height', 'Unknown')}\n\n"
description += f"Total Objects Detected: {len(objects)}\n\n"
for i, obj in enumerate(objects):
bounds = obj.get("bounds", {})
label = obj.get("label", "Unknown")
bound_text = ""
if bounds:
width = bounds.get("width", "Unknown")
height = bounds.get("height", "Unknown")
top_left = bounds.get("top_left", {})
if top_left:
x, y = top_left.get("x", "?"), top_left.get("y", "?")
bound_text = f"Position: ({x}, {y}), Size: {width}x{height}"
description += f"β€’ {label}\n {bound_text}\n"
raw_json = json.dumps(result, indent=2)
return status, description.strip(), raw_json, annotated_image_url
except Exception as e:
return f"❌ Error: {str(e)}", "", "", None
with gr.Blocks() as demo:
gr.Markdown("""
<div style='text-align: center; margin-bottom: 24px;'>
<h1 style='font-size:2.2em; margin-bottom: 0.2em;'>🧩 Object Detection</h1>
<p style='font-size:1.2em; margin-top: 0;'>Detect objects within images with great accuracy using AI models.</p>
<p style='font-size:1em; margin-top: 0.5em;'>For more details and API usage, see the <a href='https://jigsawstack.com/docs/api-reference/ai/object-detection' target='_blank'>documentation</a>.</p>
</div>
""")
with gr.Row():
with gr.Column():
input_type = gr.Radio(choices=["Image URL", "File Store Key"], value="Image URL", label="Input Type")
image_url = gr.Textbox(label="Image URL", placeholder="https://example.com/image.jpg", visible=True)
file_store_key = gr.Textbox(label="File Store Key", placeholder="my-image.jpg", visible=False)
# Advanced options
prompts = gr.Textbox(label="Prompts (comma-separated)", placeholder="wine glass, bottle, cup", info="Targeted object detection prompts")
features = gr.CheckboxGroup(choices=["object_detection", "gui"], value=["object_detection"], label="Features")
detect_btn = gr.Button("πŸ” Detect Objects")
clear_btn = gr.Button("Clear")
with gr.Column():
status_box = gr.Textbox(label="Status", interactive=False)
desc_display = gr.Textbox(label="Object Details", lines=10, interactive=False)
# Annotated image display - always visible
annotated_image_display = gr.Image(label="Annotated Image")
json_box = gr.Accordion("Raw JSON Response", open=False)
with json_box:
json_output = gr.Textbox(show_label=False, lines=20, interactive=False)
def toggle_inputs(choice):
return (
gr.update(visible=(choice == "Image URL")),
gr.update(visible=(choice == "File Store Key"))
)
input_type.change(fn=toggle_inputs, inputs=input_type, outputs=[image_url, file_store_key])
def on_detect(input_mode, url, key, prompts_text, features_list, request: gr.Request):
# Parse prompts
prompts_list = None
if prompts_text.strip():
prompts_list = [p.strip() for p in prompts_text.split(",") if p.strip()]
if input_mode == "Image URL":
return detect_objects(
request=request,
image_url=url.strip(),
prompts=prompts_list,
features=features_list
)
else:
return detect_objects(
request=request,
file_store_key=key.strip(),
prompts=prompts_list,
features=features_list
)
detect_btn.click(fn=on_detect, inputs=[
input_type, image_url, file_store_key, prompts, features
], outputs=[status_box, desc_display, json_output, annotated_image_display])
def clear_all():
return "Image URL", "", "", "", "", ["object_detection"], "", "", "", None
clear_btn.click(fn=clear_all, inputs=[], outputs=[
input_type, image_url, file_store_key, prompts, features,
status_box, desc_display, json_output, annotated_image_display
])
demo.launch()