Spaces:
Sleeping
Sleeping
# %% | |
from pathlib import Path | |
import altair as alt | |
import numpy as np | |
import pandas as pd | |
import solara | |
import solara.lab | |
import sympy as sp | |
from scipy.optimize import root_scalar | |
# %% | |
P1, P2, P4, PT, kD1, kD2 = sp.symbols("P_1 P_2 P_4 P_T k_D1 k_D2", positive=True) | |
# %% | |
sub_p1_p2 = (P1, sp.solve(kD1 * (P2 / P1**2) - 1, P1)[0]) | |
sub_p2_p4 = (P2, sp.solve(kD2 * (P4 / P2**2) - 1, P2)[0]) | |
sub_p4_p2 = (P4, sp.solve(kD2 * (P4 / P2**2) - 1, P4)[0]) | |
# %% | |
mass_balance = P1 + 2 * P2 + 4 * P4 - PT | |
eq_p4 = mass_balance.subs([sub_p1_p2, sub_p2_p4]) | |
eq_p2 = mass_balance.subs([sub_p1_p2, sub_p4_p2]) | |
# %% | |
def make_df(vmin: float, vmax: float, kD_1_v: float, kD2_v: float) -> pd.DataFrame: | |
PT_values = np.logspace(np.log10(vmin), np.log10(vmax), endpoint=True, num=100) | |
kd_subs = [(kD1, kD_1_v), (kD2, kD2_v)] | |
ld = sp.lambdify([P4, PT], eq_p4.subs(kd_subs)) | |
P4_values = np.array( | |
[root_scalar(ld, bracket=(0, PT_v), args=(PT_v,)).root for PT_v in PT_values] | |
) | |
ld = sp.lambdify([P2, PT], eq_p2.subs(kd_subs)) | |
P2_values = np.array( | |
[root_scalar(ld, bracket=(0, PT_v), args=(PT_v,)).root for PT_v in PT_values] | |
) | |
P1_values = PT_values - 2 * P2_values - 4 * P4_values | |
columns = {"P1": P1_values, "P2": P2_values, "P4": P4_values} | |
total = np.sum(list(columns.values()), axis=0) | |
df = pd.DataFrame(dict(PT=PT_values) | {k: v / total for k, v in columns.items()}) | |
return df | |
def make_chart(df: pd.DataFrame) -> alt.LayerChart: | |
source = df.melt("PT", var_name="species", value_name="y") | |
# Create a selection that chooses the nearest point & selects based on x-value | |
nearest = alt.selection_point( | |
nearest=True, on="pointerover", fields=["PT"], empty=False | |
) | |
# The basic line | |
line = ( | |
alt.Chart(source) | |
.mark_line(interpolate="basis") | |
.encode( | |
x=alt.X( | |
"PT:Q", | |
scale=alt.Scale(type="log"), | |
title="Total protomer concentration", | |
), | |
y=alt.Y("y:Q", title="Fraction of total"), | |
color="species:N", | |
) | |
.properties(width="container") | |
) | |
# Draw points on the line, and highlight based on selection | |
points = ( | |
line.mark_point() | |
.encode(opacity=alt.condition(nearest, alt.value(1), alt.value(0))) | |
.properties(width="container") | |
) | |
# Draw a rule at the location of the selection | |
rules = ( | |
alt.Chart(source) | |
.transform_pivot("species", value="y", groupby=["PT"]) | |
.mark_rule(color="black") | |
.encode( | |
x="PT:Q", | |
opacity=alt.condition(nearest, alt.value(0.3), alt.value(0)), | |
tooltip=[ | |
alt.Tooltip(c, type="quantitative", format=".2f") for c in df.columns | |
], | |
) | |
.add_params(nearest) | |
.properties(width="container") | |
) | |
# Put the five layers into a chart and bind the data | |
chart = ( | |
alt.layer(line, points, rules) | |
.properties(height=300) | |
.configure(autosize="fit-x") | |
) | |
return chart | |
md = """ | |
This app calculates monomer and dimer concentrations given a total amount of protomer PT and the | |
dissociation constant KD. More info on how and why can be found [HuggingFace](https://huggingface.co/spaces/Jhsmit/binding-kinetics) (right click, open new tab). | |
""" | |
def Page(): | |
solara.Style(Path("style.css")) | |
dark_effective = solara.lab.use_dark_effective() | |
if dark_effective is True: | |
alt.themes.enable("dark") | |
elif dark_effective is False: | |
alt.themes.enable("default") | |
kD1 = solara.use_reactive(1.0) | |
kD2 = solara.use_reactive(100) | |
vmin = solara.use_reactive(1e-3) | |
vmax = solara.use_reactive(1e3) | |
async def update(): | |
df = make_df(vmin.value, vmax.value, kD1.value, kD2.value) | |
chart = make_chart(df) | |
return chart | |
task: solara.lab.Task = solara.lab.use_task( | |
update, dependencies=[kD1.value, kD2.value, vmin.value, vmax.value] | |
) | |
solara.Title("Tetramerization Kinetics") | |
with solara.Card("Fraction monomer/dimer/tetramer"): | |
with solara.GridFixed(columns=2): | |
with solara.Tooltip("Dissociation constant monomer/dimer"): | |
solara.InputFloat("kD1", value=kD1) | |
with solara.Tooltip("Dissociation constant dimer/tetramer"): | |
solara.InputFloat("kD2", value=kD2) | |
with solara.Tooltip("X axis lower limit"): | |
solara.InputFloat("xmin", value=vmin) | |
with solara.Tooltip("X axis upper limit"): | |
solara.InputFloat("xmax", value=vmax) | |
solara.HTML(tag="div", style="height: 10px") | |
if task.finished: | |
solara.FigureAltair(task.value) | |
# %% | |