|
|
|
|
|
|
|
|
|
import inspect |
|
import math |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from diffusers.schedulers.scheduling_utils import (KarrasDiffusionSchedulers, |
|
SchedulerMixin, |
|
SchedulerOutput) |
|
from diffusers.utils import deprecate, is_scipy_available |
|
from diffusers.utils.torch_utils import randn_tensor |
|
|
|
if is_scipy_available(): |
|
pass |
|
|
|
|
|
def get_sampling_sigmas(sampling_steps, shift): |
|
sigma = np.linspace(1, 0, sampling_steps + 1)[:sampling_steps] |
|
sigma = (shift * sigma / (1 + (shift - 1) * sigma)) |
|
|
|
return sigma |
|
|
|
|
|
def retrieve_timesteps( |
|
scheduler, |
|
num_inference_steps=None, |
|
device=None, |
|
timesteps=None, |
|
sigmas=None, |
|
**kwargs, |
|
): |
|
if timesteps is not None and sigmas is not None: |
|
raise ValueError( |
|
"Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values" |
|
) |
|
if timesteps is not None: |
|
accepts_timesteps = "timesteps" in set( |
|
inspect.signature(scheduler.set_timesteps).parameters.keys()) |
|
if not accepts_timesteps: |
|
raise ValueError( |
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" |
|
f" timestep schedules. Please check whether you are using the correct scheduler." |
|
) |
|
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
num_inference_steps = len(timesteps) |
|
elif sigmas is not None: |
|
accept_sigmas = "sigmas" in set( |
|
inspect.signature(scheduler.set_timesteps).parameters.keys()) |
|
if not accept_sigmas: |
|
raise ValueError( |
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" |
|
f" sigmas schedules. Please check whether you are using the correct scheduler." |
|
) |
|
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
num_inference_steps = len(timesteps) |
|
else: |
|
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
return timesteps, num_inference_steps |
|
|
|
|
|
class FlowDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin): |
|
""" |
|
`FlowDPMSolverMultistepScheduler` is a fast dedicated high-order solver for diffusion ODEs. |
|
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic |
|
methods the library implements for all schedulers such as loading and saving. |
|
Args: |
|
num_train_timesteps (`int`, defaults to 1000): |
|
The number of diffusion steps to train the model. This determines the resolution of the diffusion process. |
|
solver_order (`int`, defaults to 2): |
|
The DPMSolver order which can be `1`, `2`, or `3`. It is recommended to use `solver_order=2` for guided |
|
sampling, and `solver_order=3` for unconditional sampling. This affects the number of model outputs stored |
|
and used in multistep updates. |
|
prediction_type (`str`, defaults to "flow_prediction"): |
|
Prediction type of the scheduler function; must be `flow_prediction` for this scheduler, which predicts |
|
the flow of the diffusion process. |
|
shift (`float`, *optional*, defaults to 1.0): |
|
A factor used to adjust the sigmas in the noise schedule. It modifies the step sizes during the sampling |
|
process. |
|
use_dynamic_shifting (`bool`, defaults to `False`): |
|
Whether to apply dynamic shifting to the timesteps based on image resolution. If `True`, the shifting is |
|
applied on the fly. |
|
thresholding (`bool`, defaults to `False`): |
|
Whether to use the "dynamic thresholding" method. This method adjusts the predicted sample to prevent |
|
saturation and improve photorealism. |
|
dynamic_thresholding_ratio (`float`, defaults to 0.995): |
|
The ratio for the dynamic thresholding method. Valid only when `thresholding=True`. |
|
sample_max_value (`float`, defaults to 1.0): |
|
The threshold value for dynamic thresholding. Valid only when `thresholding=True` and |
|
`algorithm_type="dpmsolver++"`. |
|
algorithm_type (`str`, defaults to `dpmsolver++`): |
|
Algorithm type for the solver; can be `dpmsolver`, `dpmsolver++`, `sde-dpmsolver` or `sde-dpmsolver++`. The |
|
`dpmsolver` type implements the algorithms in the [DPMSolver](https://huggingface.co/papers/2206.00927) |
|
paper, and the `dpmsolver++` type implements the algorithms in the |
|
[DPMSolver++](https://huggingface.co/papers/2211.01095) paper. It is recommended to use `dpmsolver++` or |
|
`sde-dpmsolver++` with `solver_order=2` for guided sampling like in Stable Diffusion. |
|
solver_type (`str`, defaults to `midpoint`): |
|
Solver type for the second-order solver; can be `midpoint` or `heun`. The solver type slightly affects the |
|
sample quality, especially for a small number of steps. It is recommended to use `midpoint` solvers. |
|
lower_order_final (`bool`, defaults to `True`): |
|
Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. This can |
|
stabilize the sampling of DPMSolver for steps < 15, especially for steps <= 10. |
|
euler_at_final (`bool`, defaults to `False`): |
|
Whether to use Euler's method in the final step. It is a trade-off between numerical stability and detail |
|
richness. This can stabilize the sampling of the SDE variant of DPMSolver for small number of inference |
|
steps, but sometimes may result in blurring. |
|
final_sigmas_type (`str`, *optional*, defaults to "zero"): |
|
The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final |
|
sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0. |
|
lambda_min_clipped (`float`, defaults to `-inf`): |
|
Clipping threshold for the minimum value of `lambda(t)` for numerical stability. This is critical for the |
|
cosine (`squaredcos_cap_v2`) noise schedule. |
|
variance_type (`str`, *optional*): |
|
Set to "learned" or "learned_range" for diffusion models that predict variance. If set, the model's output |
|
contains the predicted Gaussian variance. |
|
""" |
|
|
|
_compatibles = [e.name for e in KarrasDiffusionSchedulers] |
|
order = 1 |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
num_train_timesteps: int = 1000, |
|
solver_order: int = 2, |
|
prediction_type: str = "flow_prediction", |
|
shift: Optional[float] = 1.0, |
|
use_dynamic_shifting=False, |
|
thresholding: bool = False, |
|
dynamic_thresholding_ratio: float = 0.995, |
|
sample_max_value: float = 1.0, |
|
algorithm_type: str = "dpmsolver++", |
|
solver_type: str = "midpoint", |
|
lower_order_final: bool = True, |
|
euler_at_final: bool = False, |
|
final_sigmas_type: Optional[str] = "zero", |
|
lambda_min_clipped: float = -float("inf"), |
|
variance_type: Optional[str] = None, |
|
invert_sigmas: bool = False, |
|
): |
|
if algorithm_type in ["dpmsolver", "sde-dpmsolver"]: |
|
deprecation_message = f"algorithm_type {algorithm_type} is deprecated and will be removed in a future version. Choose from `dpmsolver++` or `sde-dpmsolver++` instead" |
|
deprecate("algorithm_types dpmsolver and sde-dpmsolver", "1.0.0", |
|
deprecation_message) |
|
|
|
|
|
if algorithm_type not in [ |
|
"dpmsolver", "dpmsolver++", "sde-dpmsolver", "sde-dpmsolver++" |
|
]: |
|
if algorithm_type == "deis": |
|
self.register_to_config(algorithm_type="dpmsolver++") |
|
else: |
|
raise NotImplementedError( |
|
f"{algorithm_type} is not implemented for {self.__class__}") |
|
|
|
if solver_type not in ["midpoint", "heun"]: |
|
if solver_type in ["logrho", "bh1", "bh2"]: |
|
self.register_to_config(solver_type="midpoint") |
|
else: |
|
raise NotImplementedError( |
|
f"{solver_type} is not implemented for {self.__class__}") |
|
|
|
if algorithm_type not in ["dpmsolver++", "sde-dpmsolver++" |
|
] and final_sigmas_type == "zero": |
|
raise ValueError( |
|
f"`final_sigmas_type` {final_sigmas_type} is not supported for `algorithm_type` {algorithm_type}. Please choose `sigma_min` instead." |
|
) |
|
|
|
|
|
self.num_inference_steps = None |
|
alphas = np.linspace(1, 1 / num_train_timesteps, |
|
num_train_timesteps)[::-1].copy() |
|
sigmas = 1.0 - alphas |
|
sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32) |
|
|
|
if not use_dynamic_shifting: |
|
|
|
sigmas = shift * sigmas / (1 + |
|
(shift - 1) * sigmas) |
|
|
|
self.sigmas = sigmas |
|
self.timesteps = sigmas * num_train_timesteps |
|
|
|
self.model_outputs = [None] * solver_order |
|
self.lower_order_nums = 0 |
|
self._step_index = None |
|
self._begin_index = None |
|
|
|
|
|
|
|
self.sigma_min = self.sigmas[-1].item() |
|
self.sigma_max = self.sigmas[0].item() |
|
|
|
@property |
|
def step_index(self): |
|
""" |
|
The index counter for current timestep. It will increase 1 after each scheduler step. |
|
""" |
|
return self._step_index |
|
|
|
@property |
|
def begin_index(self): |
|
""" |
|
The index for the first timestep. It should be set from pipeline with `set_begin_index` method. |
|
""" |
|
return self._begin_index |
|
|
|
|
|
def set_begin_index(self, begin_index: int = 0): |
|
""" |
|
Sets the begin index for the scheduler. This function should be run from pipeline before the inference. |
|
Args: |
|
begin_index (`int`): |
|
The begin index for the scheduler. |
|
""" |
|
self._begin_index = begin_index |
|
|
|
|
|
def set_timesteps( |
|
self, |
|
num_inference_steps: Union[int, None] = None, |
|
device: Union[str, torch.device] = None, |
|
sigmas: Optional[List[float]] = None, |
|
mu: Optional[Union[float, None]] = None, |
|
shift: Optional[Union[float, None]] = None, |
|
): |
|
""" |
|
Sets the discrete timesteps used for the diffusion chain (to be run before inference). |
|
Args: |
|
num_inference_steps (`int`): |
|
Total number of the spacing of the time steps. |
|
device (`str` or `torch.device`, *optional*): |
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. |
|
""" |
|
|
|
if self.config.use_dynamic_shifting and mu is None: |
|
raise ValueError( |
|
" you have to pass a value for `mu` when `use_dynamic_shifting` is set to be `True`" |
|
) |
|
|
|
if sigmas is None: |
|
sigmas = np.linspace(self.sigma_max, self.sigma_min, |
|
num_inference_steps + |
|
1).copy()[:-1] |
|
|
|
if self.config.use_dynamic_shifting: |
|
sigmas = self.time_shift(mu, 1.0, sigmas) |
|
else: |
|
if shift is None: |
|
shift = self.config.shift |
|
sigmas = shift * sigmas / (1 + |
|
(shift - 1) * sigmas) |
|
|
|
if self.config.final_sigmas_type == "sigma_min": |
|
sigma_last = ((1 - self.alphas_cumprod[0]) / |
|
self.alphas_cumprod[0])**0.5 |
|
elif self.config.final_sigmas_type == "zero": |
|
sigma_last = 0 |
|
else: |
|
raise ValueError( |
|
f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}" |
|
) |
|
|
|
timesteps = sigmas * self.config.num_train_timesteps |
|
sigmas = np.concatenate([sigmas, [sigma_last] |
|
]).astype(np.float32) |
|
|
|
self.sigmas = torch.from_numpy(sigmas) |
|
self.timesteps = torch.from_numpy(timesteps).to( |
|
device=device, dtype=torch.int64) |
|
|
|
self.num_inference_steps = len(timesteps) |
|
|
|
self.model_outputs = [ |
|
None, |
|
] * self.config.solver_order |
|
self.lower_order_nums = 0 |
|
|
|
self._step_index = None |
|
self._begin_index = None |
|
|
|
|
|
|
|
|
|
def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor: |
|
""" |
|
"Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the |
|
prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by |
|
s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing |
|
pixels from saturation at each step. We find that dynamic thresholding results in significantly better |
|
photorealism as well as better image-text alignment, especially when using very large guidance weights." |
|
https://arxiv.org/abs/2205.11487 |
|
""" |
|
dtype = sample.dtype |
|
batch_size, channels, *remaining_dims = sample.shape |
|
|
|
if dtype not in (torch.float32, torch.float64): |
|
sample = sample.float( |
|
) |
|
|
|
|
|
sample = sample.reshape(batch_size, channels * np.prod(remaining_dims)) |
|
|
|
abs_sample = sample.abs() |
|
|
|
s = torch.quantile( |
|
abs_sample, self.config.dynamic_thresholding_ratio, dim=1) |
|
s = torch.clamp( |
|
s, min=1, max=self.config.sample_max_value |
|
) |
|
s = s.unsqueeze( |
|
1) |
|
sample = torch.clamp( |
|
sample, -s, s |
|
) / s |
|
|
|
sample = sample.reshape(batch_size, channels, *remaining_dims) |
|
sample = sample.to(dtype) |
|
|
|
return sample |
|
|
|
|
|
def _sigma_to_t(self, sigma): |
|
return sigma * self.config.num_train_timesteps |
|
|
|
def _sigma_to_alpha_sigma_t(self, sigma): |
|
return 1 - sigma, sigma |
|
|
|
|
|
def time_shift(self, mu: float, sigma: float, t: torch.Tensor): |
|
return math.exp(mu) / (math.exp(mu) + (1 / t - 1)**sigma) |
|
|
|
|
|
def convert_model_output( |
|
self, |
|
model_output: torch.Tensor, |
|
*args, |
|
sample: torch.Tensor = None, |
|
**kwargs, |
|
) -> torch.Tensor: |
|
""" |
|
Convert the model output to the corresponding type the DPMSolver/DPMSolver++ algorithm needs. DPM-Solver is |
|
designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to discretize an |
|
integral of the data prediction model. |
|
<Tip> |
|
The algorithm and model type are decoupled. You can use either DPMSolver or DPMSolver++ for both noise |
|
prediction and data prediction models. |
|
</Tip> |
|
Args: |
|
model_output (`torch.Tensor`): |
|
The direct output from the learned diffusion model. |
|
sample (`torch.Tensor`): |
|
A current instance of a sample created by the diffusion process. |
|
Returns: |
|
`torch.Tensor`: |
|
The converted model output. |
|
""" |
|
timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None) |
|
if sample is None: |
|
if len(args) > 1: |
|
sample = args[1] |
|
else: |
|
raise ValueError( |
|
"missing `sample` as a required keyward argument") |
|
if timestep is not None: |
|
deprecate( |
|
"timesteps", |
|
"1.0.0", |
|
"Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`", |
|
) |
|
|
|
|
|
if self.config.algorithm_type in ["dpmsolver++", "sde-dpmsolver++"]: |
|
if self.config.prediction_type == "flow_prediction": |
|
sigma_t = self.sigmas[self.step_index] |
|
x0_pred = sample - sigma_t * model_output |
|
else: |
|
raise ValueError( |
|
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`," |
|
" `v_prediction`, or `flow_prediction` for the FlowDPMSolverMultistepScheduler." |
|
) |
|
|
|
if self.config.thresholding: |
|
x0_pred = self._threshold_sample(x0_pred) |
|
|
|
return x0_pred |
|
|
|
|
|
elif self.config.algorithm_type in ["dpmsolver", "sde-dpmsolver"]: |
|
if self.config.prediction_type == "flow_prediction": |
|
sigma_t = self.sigmas[self.step_index] |
|
epsilon = sample - (1 - sigma_t) * model_output |
|
else: |
|
raise ValueError( |
|
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`," |
|
" `v_prediction` or `flow_prediction` for the FlowDPMSolverMultistepScheduler." |
|
) |
|
|
|
if self.config.thresholding: |
|
sigma_t = self.sigmas[self.step_index] |
|
x0_pred = sample - sigma_t * model_output |
|
x0_pred = self._threshold_sample(x0_pred) |
|
epsilon = model_output + x0_pred |
|
|
|
return epsilon |
|
|
|
|
|
def dpm_solver_first_order_update( |
|
self, |
|
model_output: torch.Tensor, |
|
*args, |
|
sample: torch.Tensor = None, |
|
noise: Optional[torch.Tensor] = None, |
|
**kwargs, |
|
) -> torch.Tensor: |
|
""" |
|
One step for the first-order DPMSolver (equivalent to DDIM). |
|
Args: |
|
model_output (`torch.Tensor`): |
|
The direct output from the learned diffusion model. |
|
sample (`torch.Tensor`): |
|
A current instance of a sample created by the diffusion process. |
|
Returns: |
|
`torch.Tensor`: |
|
The sample tensor at the previous timestep. |
|
""" |
|
timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None) |
|
prev_timestep = args[1] if len(args) > 1 else kwargs.pop( |
|
"prev_timestep", None) |
|
if sample is None: |
|
if len(args) > 2: |
|
sample = args[2] |
|
else: |
|
raise ValueError( |
|
" missing `sample` as a required keyward argument") |
|
if timestep is not None: |
|
deprecate( |
|
"timesteps", |
|
"1.0.0", |
|
"Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`", |
|
) |
|
|
|
if prev_timestep is not None: |
|
deprecate( |
|
"prev_timestep", |
|
"1.0.0", |
|
"Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`", |
|
) |
|
|
|
sigma_t, sigma_s = self.sigmas[self.step_index + 1], self.sigmas[ |
|
self.step_index] |
|
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t) |
|
alpha_s, sigma_s = self._sigma_to_alpha_sigma_t(sigma_s) |
|
lambda_t = torch.log(alpha_t) - torch.log(sigma_t) |
|
lambda_s = torch.log(alpha_s) - torch.log(sigma_s) |
|
|
|
h = lambda_t - lambda_s |
|
if self.config.algorithm_type == "dpmsolver++": |
|
x_t = (sigma_t / |
|
sigma_s) * sample - (alpha_t * |
|
(torch.exp(-h) - 1.0)) * model_output |
|
elif self.config.algorithm_type == "dpmsolver": |
|
x_t = (alpha_t / |
|
alpha_s) * sample - (sigma_t * |
|
(torch.exp(h) - 1.0)) * model_output |
|
elif self.config.algorithm_type == "sde-dpmsolver++": |
|
assert noise is not None |
|
x_t = ((sigma_t / sigma_s * torch.exp(-h)) * sample + |
|
(alpha_t * (1 - torch.exp(-2.0 * h))) * model_output + |
|
sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise) |
|
elif self.config.algorithm_type == "sde-dpmsolver": |
|
assert noise is not None |
|
x_t = ((alpha_t / alpha_s) * sample - 2.0 * |
|
(sigma_t * (torch.exp(h) - 1.0)) * model_output + |
|
sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise) |
|
return x_t |
|
|
|
|
|
def multistep_dpm_solver_second_order_update( |
|
self, |
|
model_output_list: List[torch.Tensor], |
|
*args, |
|
sample: torch.Tensor = None, |
|
noise: Optional[torch.Tensor] = None, |
|
**kwargs, |
|
) -> torch.Tensor: |
|
""" |
|
One step for the second-order multistep DPMSolver. |
|
Args: |
|
model_output_list (`List[torch.Tensor]`): |
|
The direct outputs from learned diffusion model at current and latter timesteps. |
|
sample (`torch.Tensor`): |
|
A current instance of a sample created by the diffusion process. |
|
Returns: |
|
`torch.Tensor`: |
|
The sample tensor at the previous timestep. |
|
""" |
|
timestep_list = args[0] if len(args) > 0 else kwargs.pop( |
|
"timestep_list", None) |
|
prev_timestep = args[1] if len(args) > 1 else kwargs.pop( |
|
"prev_timestep", None) |
|
if sample is None: |
|
if len(args) > 2: |
|
sample = args[2] |
|
else: |
|
raise ValueError( |
|
" missing `sample` as a required keyward argument") |
|
if timestep_list is not None: |
|
deprecate( |
|
"timestep_list", |
|
"1.0.0", |
|
"Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`", |
|
) |
|
|
|
if prev_timestep is not None: |
|
deprecate( |
|
"prev_timestep", |
|
"1.0.0", |
|
"Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`", |
|
) |
|
|
|
sigma_t, sigma_s0, sigma_s1 = ( |
|
self.sigmas[self.step_index + 1], |
|
self.sigmas[self.step_index], |
|
self.sigmas[self.step_index - 1], |
|
) |
|
|
|
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t) |
|
alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0) |
|
alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1) |
|
|
|
lambda_t = torch.log(alpha_t) - torch.log(sigma_t) |
|
lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0) |
|
lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1) |
|
|
|
m0, m1 = model_output_list[-1], model_output_list[-2] |
|
|
|
h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1 |
|
r0 = h_0 / h |
|
D0, D1 = m0, (1.0 / r0) * (m0 - m1) |
|
if self.config.algorithm_type == "dpmsolver++": |
|
|
|
if self.config.solver_type == "midpoint": |
|
x_t = ((sigma_t / sigma_s0) * sample - |
|
(alpha_t * (torch.exp(-h) - 1.0)) * D0 - 0.5 * |
|
(alpha_t * (torch.exp(-h) - 1.0)) * D1) |
|
elif self.config.solver_type == "heun": |
|
x_t = ((sigma_t / sigma_s0) * sample - |
|
(alpha_t * (torch.exp(-h) - 1.0)) * D0 + |
|
(alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1) |
|
elif self.config.algorithm_type == "dpmsolver": |
|
|
|
if self.config.solver_type == "midpoint": |
|
x_t = ((alpha_t / alpha_s0) * sample - |
|
(sigma_t * (torch.exp(h) - 1.0)) * D0 - 0.5 * |
|
(sigma_t * (torch.exp(h) - 1.0)) * D1) |
|
elif self.config.solver_type == "heun": |
|
x_t = ((alpha_t / alpha_s0) * sample - |
|
(sigma_t * (torch.exp(h) - 1.0)) * D0 - |
|
(sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1) |
|
elif self.config.algorithm_type == "sde-dpmsolver++": |
|
assert noise is not None |
|
if self.config.solver_type == "midpoint": |
|
x_t = ((sigma_t / sigma_s0 * torch.exp(-h)) * sample + |
|
(alpha_t * (1 - torch.exp(-2.0 * h))) * D0 + 0.5 * |
|
(alpha_t * (1 - torch.exp(-2.0 * h))) * D1 + |
|
sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise) |
|
elif self.config.solver_type == "heun": |
|
x_t = ((sigma_t / sigma_s0 * torch.exp(-h)) * sample + |
|
(alpha_t * (1 - torch.exp(-2.0 * h))) * D0 + |
|
(alpha_t * ((1.0 - torch.exp(-2.0 * h)) / |
|
(-2.0 * h) + 1.0)) * D1 + |
|
sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise) |
|
elif self.config.algorithm_type == "sde-dpmsolver": |
|
assert noise is not None |
|
if self.config.solver_type == "midpoint": |
|
x_t = ((alpha_t / alpha_s0) * sample - 2.0 * |
|
(sigma_t * (torch.exp(h) - 1.0)) * D0 - |
|
(sigma_t * (torch.exp(h) - 1.0)) * D1 + |
|
sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise) |
|
elif self.config.solver_type == "heun": |
|
x_t = ((alpha_t / alpha_s0) * sample - 2.0 * |
|
(sigma_t * (torch.exp(h) - 1.0)) * D0 - 2.0 * |
|
(sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1 + |
|
sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise) |
|
return x_t |
|
|
|
|
|
def multistep_dpm_solver_third_order_update( |
|
self, |
|
model_output_list: List[torch.Tensor], |
|
*args, |
|
sample: torch.Tensor = None, |
|
**kwargs, |
|
) -> torch.Tensor: |
|
""" |
|
One step for the third-order multistep DPMSolver. |
|
Args: |
|
model_output_list (`List[torch.Tensor]`): |
|
The direct outputs from learned diffusion model at current and latter timesteps. |
|
sample (`torch.Tensor`): |
|
A current instance of a sample created by diffusion process. |
|
Returns: |
|
`torch.Tensor`: |
|
The sample tensor at the previous timestep. |
|
""" |
|
|
|
timestep_list = args[0] if len(args) > 0 else kwargs.pop( |
|
"timestep_list", None) |
|
prev_timestep = args[1] if len(args) > 1 else kwargs.pop( |
|
"prev_timestep", None) |
|
if sample is None: |
|
if len(args) > 2: |
|
sample = args[2] |
|
else: |
|
raise ValueError( |
|
" missing`sample` as a required keyward argument") |
|
if timestep_list is not None: |
|
deprecate( |
|
"timestep_list", |
|
"1.0.0", |
|
"Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`", |
|
) |
|
|
|
if prev_timestep is not None: |
|
deprecate( |
|
"prev_timestep", |
|
"1.0.0", |
|
"Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`", |
|
) |
|
|
|
sigma_t, sigma_s0, sigma_s1, sigma_s2 = ( |
|
self.sigmas[self.step_index + 1], |
|
self.sigmas[self.step_index], |
|
self.sigmas[self.step_index - 1], |
|
self.sigmas[self.step_index - 2], |
|
) |
|
|
|
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t) |
|
alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0) |
|
alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1) |
|
alpha_s2, sigma_s2 = self._sigma_to_alpha_sigma_t(sigma_s2) |
|
|
|
lambda_t = torch.log(alpha_t) - torch.log(sigma_t) |
|
lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0) |
|
lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1) |
|
lambda_s2 = torch.log(alpha_s2) - torch.log(sigma_s2) |
|
|
|
m0, m1, m2 = model_output_list[-1], model_output_list[ |
|
-2], model_output_list[-3] |
|
|
|
h, h_0, h_1 = lambda_t - lambda_s0, lambda_s0 - lambda_s1, lambda_s1 - lambda_s2 |
|
r0, r1 = h_0 / h, h_1 / h |
|
D0 = m0 |
|
D1_0, D1_1 = (1.0 / r0) * (m0 - m1), (1.0 / r1) * (m1 - m2) |
|
D1 = D1_0 + (r0 / (r0 + r1)) * (D1_0 - D1_1) |
|
D2 = (1.0 / (r0 + r1)) * (D1_0 - D1_1) |
|
if self.config.algorithm_type == "dpmsolver++": |
|
|
|
x_t = ((sigma_t / sigma_s0) * sample - |
|
(alpha_t * (torch.exp(-h) - 1.0)) * D0 + |
|
(alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1 - |
|
(alpha_t * ((torch.exp(-h) - 1.0 + h) / h**2 - 0.5)) * D2) |
|
elif self.config.algorithm_type == "dpmsolver": |
|
|
|
x_t = ((alpha_t / alpha_s0) * sample - (sigma_t * |
|
(torch.exp(h) - 1.0)) * D0 - |
|
(sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1 - |
|
(sigma_t * ((torch.exp(h) - 1.0 - h) / h**2 - 0.5)) * D2) |
|
return x_t |
|
|
|
def index_for_timestep(self, timestep, schedule_timesteps=None): |
|
if schedule_timesteps is None: |
|
schedule_timesteps = self.timesteps |
|
|
|
indices = (schedule_timesteps == timestep).nonzero() |
|
|
|
|
|
|
|
|
|
|
|
pos = 1 if len(indices) > 1 else 0 |
|
|
|
return indices[pos].item() |
|
|
|
def _init_step_index(self, timestep): |
|
""" |
|
Initialize the step_index counter for the scheduler. |
|
""" |
|
|
|
if self.begin_index is None: |
|
if isinstance(timestep, torch.Tensor): |
|
timestep = timestep.to(self.timesteps.device) |
|
self._step_index = self.index_for_timestep(timestep) |
|
else: |
|
self._step_index = self._begin_index |
|
|
|
|
|
def step( |
|
self, |
|
model_output: torch.Tensor, |
|
timestep: Union[int, torch.Tensor], |
|
sample: torch.Tensor, |
|
generator=None, |
|
variance_noise: Optional[torch.Tensor] = None, |
|
return_dict: bool = True, |
|
) -> Union[SchedulerOutput, Tuple]: |
|
""" |
|
Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with |
|
the multistep DPMSolver. |
|
Args: |
|
model_output (`torch.Tensor`): |
|
The direct output from learned diffusion model. |
|
timestep (`int`): |
|
The current discrete timestep in the diffusion chain. |
|
sample (`torch.Tensor`): |
|
A current instance of a sample created by the diffusion process. |
|
generator (`torch.Generator`, *optional*): |
|
A random number generator. |
|
variance_noise (`torch.Tensor`): |
|
Alternative to generating noise with `generator` by directly providing the noise for the variance |
|
itself. Useful for methods such as [`LEdits++`]. |
|
return_dict (`bool`): |
|
Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`. |
|
Returns: |
|
[`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`: |
|
If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a |
|
tuple is returned where the first element is the sample tensor. |
|
""" |
|
if self.num_inference_steps is None: |
|
raise ValueError( |
|
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" |
|
) |
|
|
|
if self.step_index is None: |
|
self._init_step_index(timestep) |
|
|
|
|
|
lower_order_final = (self.step_index == len(self.timesteps) - 1) and ( |
|
self.config.euler_at_final or |
|
(self.config.lower_order_final and len(self.timesteps) < 15) or |
|
self.config.final_sigmas_type == "zero") |
|
lower_order_second = ((self.step_index == len(self.timesteps) - 2) and |
|
self.config.lower_order_final and |
|
len(self.timesteps) < 15) |
|
|
|
model_output = self.convert_model_output(model_output, sample=sample) |
|
for i in range(self.config.solver_order - 1): |
|
self.model_outputs[i] = self.model_outputs[i + 1] |
|
self.model_outputs[-1] = model_output |
|
|
|
|
|
sample = sample.to(torch.float32) |
|
if self.config.algorithm_type in ["sde-dpmsolver", "sde-dpmsolver++" |
|
] and variance_noise is None: |
|
noise = randn_tensor( |
|
model_output.shape, |
|
generator=generator, |
|
device=model_output.device, |
|
dtype=torch.float32) |
|
elif self.config.algorithm_type in ["sde-dpmsolver", "sde-dpmsolver++"]: |
|
noise = variance_noise.to( |
|
device=model_output.device, |
|
dtype=torch.float32) |
|
else: |
|
noise = None |
|
|
|
if self.config.solver_order == 1 or self.lower_order_nums < 1 or lower_order_final: |
|
prev_sample = self.dpm_solver_first_order_update( |
|
model_output, sample=sample, noise=noise) |
|
elif self.config.solver_order == 2 or self.lower_order_nums < 2 or lower_order_second: |
|
prev_sample = self.multistep_dpm_solver_second_order_update( |
|
self.model_outputs, sample=sample, noise=noise) |
|
else: |
|
prev_sample = self.multistep_dpm_solver_third_order_update( |
|
self.model_outputs, sample=sample) |
|
|
|
if self.lower_order_nums < self.config.solver_order: |
|
self.lower_order_nums += 1 |
|
|
|
|
|
prev_sample = prev_sample.to(model_output.dtype) |
|
|
|
|
|
self._step_index += 1 |
|
|
|
if not return_dict: |
|
return (prev_sample,) |
|
|
|
return SchedulerOutput(prev_sample=prev_sample) |
|
|
|
|
|
def scale_model_input(self, sample: torch.Tensor, *args, |
|
**kwargs) -> torch.Tensor: |
|
""" |
|
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the |
|
current timestep. |
|
Args: |
|
sample (`torch.Tensor`): |
|
The input sample. |
|
Returns: |
|
`torch.Tensor`: |
|
A scaled input sample. |
|
""" |
|
return sample |
|
|
|
|
|
def add_noise( |
|
self, |
|
original_samples: torch.Tensor, |
|
noise: torch.Tensor, |
|
timesteps: torch.IntTensor, |
|
) -> torch.Tensor: |
|
|
|
sigmas = self.sigmas.to( |
|
device=original_samples.device, dtype=original_samples.dtype) |
|
if original_samples.device.type == "mps" and torch.is_floating_point( |
|
timesteps): |
|
|
|
schedule_timesteps = self.timesteps.to( |
|
original_samples.device, dtype=torch.float32) |
|
timesteps = timesteps.to( |
|
original_samples.device, dtype=torch.float32) |
|
else: |
|
schedule_timesteps = self.timesteps.to(original_samples.device) |
|
timesteps = timesteps.to(original_samples.device) |
|
|
|
|
|
if self.begin_index is None: |
|
step_indices = [ |
|
self.index_for_timestep(t, schedule_timesteps) |
|
for t in timesteps |
|
] |
|
elif self.step_index is not None: |
|
|
|
step_indices = [self.step_index] * timesteps.shape[0] |
|
else: |
|
|
|
step_indices = [self.begin_index] * timesteps.shape[0] |
|
|
|
sigma = sigmas[step_indices].flatten() |
|
while len(sigma.shape) < len(original_samples.shape): |
|
sigma = sigma.unsqueeze(-1) |
|
|
|
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma) |
|
noisy_samples = alpha_t * original_samples + sigma_t * noise |
|
return noisy_samples |
|
|
|
def __len__(self): |
|
return self.config.num_train_timesteps |
|
|