Spaces:
Runtime error
Runtime error
from fastapi import FastAPI, HTTPException | |
from pydantic import BaseModel | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import sqlite3 | |
import torch | |
app = FastAPI() | |
# Load the DeepSeek model and tokenizer | |
MODEL_NAME = "deepseek-ai/deepseek-coder-1.3b-instruct" | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.float16).to("cpu") # Use "cuda" if available | |
# SQLite database file | |
DATABASE_FILE = "example.db" | |
class ChatRequest(BaseModel): | |
message: str | |
def generate_sql_query(user_input: str) -> str: | |
""" | |
Generate an SQL query from a natural language query using the DeepSeek model. | |
""" | |
inputs = tokenizer(user_input, return_tensors="pt") | |
outputs = model.generate(**inputs, max_length=100) | |
sql_query = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return sql_query | |
def execute_sql_query(sql_query: str): | |
""" | |
Execute the SQL query on the SQLite database and return the results. | |
""" | |
conn = sqlite3.connect(DATABASE_FILE) | |
cursor = conn.cursor() | |
try: | |
cursor.execute(sql_query) | |
results = cursor.fetchall() | |
except sqlite3.Error as e: | |
results = str(e) # Return the error message if query execution fails | |
conn.close() | |
return results | |
def chat(request: ChatRequest): | |
user_input = request.message | |
sql_query = generate_sql_query(user_input) | |
print(f"Generated SQL Query: {sql_query}") | |
return {"response": sql_query} | |
def home(): | |
return {"message": "DeepSeek SQL Query API is running"} | |
# Run the API | |
if __name__ == "__main__": | |
import uvicorn | |
uvicorn.run(app, host="0.0.0.0", port=8000) |