from fastapi import FastAPI, HTTPException from pydantic import BaseModel from transformers import AutoModelForCausalLM, AutoTokenizer import sqlite3 import torch app = FastAPI() # Load the DeepSeek model and tokenizer MODEL_NAME = "deepseek-ai/deepseek-coder-1.3b-instruct" tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.float16).to("cpu") # Use "cuda" if available # SQLite database file DATABASE_FILE = "example.db" class ChatRequest(BaseModel): message: str def generate_sql_query(user_input: str) -> str: """ Generate an SQL query from a natural language query using the DeepSeek model. """ inputs = tokenizer(user_input, return_tensors="pt") outputs = model.generate(**inputs, max_length=100) sql_query = tokenizer.decode(outputs[0], skip_special_tokens=True) return sql_query def execute_sql_query(sql_query: str): """ Execute the SQL query on the SQLite database and return the results. """ conn = sqlite3.connect(DATABASE_FILE) cursor = conn.cursor() try: cursor.execute(sql_query) results = cursor.fetchall() except sqlite3.Error as e: results = str(e) # Return the error message if query execution fails conn.close() return results @app.post("/chat") def chat(request: ChatRequest): user_input = request.message sql_query = generate_sql_query(user_input) print(f"Generated SQL Query: {sql_query}") return {"response": sql_query} @app.get("/") def home(): return {"message": "DeepSeek SQL Query API is running"} # Run the API if __name__ == "__main__": import uvicorn uvicorn.run(app, host="0.0.0.0", port=8000)