Spaces:
Configuration error
Configuration error
from torch import Tensor | |
import folder_paths | |
from nodes import VAEEncode | |
import comfy.utils | |
from comfy.sd import VAE | |
from .utils import TimestepKeyframeGroup | |
from .control_sparsectrl import SparseMethod, SparseIndexMethod, SparseSettings, SparseSpreadMethod, PreprocSparseRGBWrapper | |
from .control import load_sparsectrl, load_controlnet, ControlNetAdvanced, SparseCtrlAdvanced | |
# node for SparseCtrl loading | |
class SparseCtrlLoaderAdvanced: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"sparsectrl_name": (folder_paths.get_filename_list("controlnet"), ), | |
"use_motion": ("BOOLEAN", {"default": True}, ), | |
"motion_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), | |
"motion_scale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), | |
}, | |
"optional": { | |
"sparse_method": ("SPARSE_METHOD", ), | |
"tk_optional": ("TIMESTEP_KEYFRAME", ), | |
} | |
} | |
RETURN_TYPES = ("CONTROL_NET", ) | |
FUNCTION = "load_controlnet" | |
CATEGORY = "Adv-ControlNet ππ π π /SparseCtrl" | |
def load_controlnet(self, sparsectrl_name: str, use_motion: bool, motion_strength: float, motion_scale: float, sparse_method: SparseMethod=SparseSpreadMethod(), tk_optional: TimestepKeyframeGroup=None): | |
sparsectrl_path = folder_paths.get_full_path("controlnet", sparsectrl_name) | |
sparse_settings = SparseSettings(sparse_method=sparse_method, use_motion=use_motion, motion_strength=motion_strength, motion_scale=motion_scale) | |
sparsectrl = load_sparsectrl(sparsectrl_path, timestep_keyframe=tk_optional, sparse_settings=sparse_settings) | |
return (sparsectrl,) | |
class SparseCtrlMergedLoaderAdvanced: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"sparsectrl_name": (folder_paths.get_filename_list("controlnet"), ), | |
"control_net_name": (folder_paths.get_filename_list("controlnet"), ), | |
"use_motion": ("BOOLEAN", {"default": True}, ), | |
"motion_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), | |
"motion_scale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), | |
}, | |
"optional": { | |
"sparse_method": ("SPARSE_METHOD", ), | |
"tk_optional": ("TIMESTEP_KEYFRAME", ), | |
} | |
} | |
RETURN_TYPES = ("CONTROL_NET", ) | |
FUNCTION = "load_controlnet" | |
CATEGORY = "Adv-ControlNet ππ π π /SparseCtrl/experimental" | |
def load_controlnet(self, sparsectrl_name: str, control_net_name: str, use_motion: bool, motion_strength: float, motion_scale: float, sparse_method: SparseMethod=SparseSpreadMethod(), tk_optional: TimestepKeyframeGroup=None): | |
sparsectrl_path = folder_paths.get_full_path("controlnet", sparsectrl_name) | |
controlnet_path = folder_paths.get_full_path("controlnet", control_net_name) | |
sparse_settings = SparseSettings(sparse_method=sparse_method, use_motion=use_motion, motion_strength=motion_strength, motion_scale=motion_scale, merged=True) | |
# first, load normal controlnet | |
controlnet = load_controlnet(controlnet_path, timestep_keyframe=tk_optional) | |
# confirm that controlnet is ControlNetAdvanced | |
if controlnet is None or type(controlnet) != ControlNetAdvanced: | |
raise ValueError(f"controlnet_path must point to a normal ControlNet, but instead: {type(controlnet).__name__}") | |
# next, load sparsectrl, making sure to load motion portion | |
sparsectrl = load_sparsectrl(sparsectrl_path, timestep_keyframe=tk_optional, sparse_settings=SparseSettings.default()) | |
# now, combine state dicts | |
new_state_dict = controlnet.control_model.state_dict() | |
for key, value in sparsectrl.control_model.motion_holder.motion_wrapper.state_dict().items(): | |
new_state_dict[key] = value | |
# now, reload sparsectrl with real settings | |
sparsectrl = load_sparsectrl(sparsectrl_path, controlnet_data=new_state_dict, timestep_keyframe=tk_optional, sparse_settings=sparse_settings) | |
return (sparsectrl,) | |
class SparseIndexMethodNode: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"indexes": ("STRING", {"default": "0"}), | |
} | |
} | |
RETURN_TYPES = ("SPARSE_METHOD",) | |
FUNCTION = "get_method" | |
CATEGORY = "Adv-ControlNet ππ π π /SparseCtrl" | |
def get_method(self, indexes: str): | |
idxs = [] | |
unique_idxs = set() | |
# get indeces from string | |
str_idxs = [x.strip() for x in indexes.strip().split(",")] | |
for str_idx in str_idxs: | |
try: | |
idx = int(str_idx) | |
if idx in unique_idxs: | |
raise ValueError(f"'{idx}' is duplicated; indexes must be unique.") | |
idxs.append(idx) | |
unique_idxs.add(idx) | |
except ValueError: | |
raise ValueError(f"'{str_idx}' is not a valid integer index.") | |
if len(idxs) == 0: | |
raise ValueError(f"No indexes were listed in Sparse Index Method.") | |
return (SparseIndexMethod(idxs),) | |
class SparseSpreadMethodNode: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"spread": (SparseSpreadMethod.LIST,), | |
} | |
} | |
RETURN_TYPES = ("SPARSE_METHOD",) | |
FUNCTION = "get_method" | |
CATEGORY = "Adv-ControlNet ππ π π /SparseCtrl" | |
def get_method(self, spread: str): | |
return (SparseSpreadMethod(spread=spread),) | |
class RgbSparseCtrlPreprocessor: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"image": ("IMAGE", ), | |
"vae": ("VAE", ), | |
"latent_size": ("LATENT", ), | |
} | |
} | |
RETURN_TYPES = ("IMAGE",) | |
RETURN_NAMES = ("proc_IMAGE",) | |
FUNCTION = "preprocess_images" | |
CATEGORY = "Adv-ControlNet ππ π π /SparseCtrl/preprocess" | |
def preprocess_images(self, vae: VAE, image: Tensor, latent_size: Tensor): | |
# first, resize image to match latents | |
image = image.movedim(-1,1) | |
image = comfy.utils.common_upscale(image, latent_size["samples"].shape[3] * 8, latent_size["samples"].shape[2] * 8, 'nearest-exact', "center") | |
image = image.movedim(1,-1) | |
# then, vae encode | |
try: | |
image = vae.vae_encode_crop_pixels(image) | |
except Exception: | |
image = VAEEncode.vae_encode_crop_pixels(image) | |
encoded = vae.encode(image[:,:,:,:3]) | |
return (PreprocSparseRGBWrapper(condhint=encoded),) | |